On stabbing triangles by lines in 3-space
Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 109-113
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give an example of a set $P$ of $3n$ points in $\Bbb R 3$ such that, for any partition of $P$ into triples, there exists a line stabbing $\Omega(\sqrt n)$ of the triangles determined by the triples.
We give an example of a set $P$ of $3n$ points in $\Bbb R 3$ such that, for any partition of $P$ into triples, there exists a line stabbing $\Omega(\sqrt n)$ of the triangles determined by the triples.
Classification :
52B55, 52C99, 68U05
Keywords: combinatorial geometry; computational geometry; crossing number
Keywords: combinatorial geometry; computational geometry; crossing number
@article{CMUC_1995_36_1_a12,
author = {Aronov, Boris and Matou\v{s}ek, Ji\v{r}{\'\i}},
title = {On stabbing triangles by lines in 3-space},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {109--113},
year = {1995},
volume = {36},
number = {1},
mrnumber = {1334418},
zbl = {0831.52011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1995_36_1_a12/}
}
Aronov, Boris; Matoušek, Jiří. On stabbing triangles by lines in 3-space. Commentationes Mathematicae Universitatis Carolinae, Tome 36 (1995) no. 1, pp. 109-113. http://geodesic.mathdoc.fr/item/CMUC_1995_36_1_a12/