Checking positive definiteness or stability of symmetric interval matrices is NP-hard
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 795-797
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
It is proved that checking positive definiteness, stability or nonsingularity of all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
Classification :
15A18, 15A48, 65F30, 65G30, 65Y20, 68Q25
Keywords: positive definiteness; stability; nonsingularity; NP-hardness
Keywords: positive definiteness; stability; nonsingularity; NP-hardness
@article{CMUC_1994_35_4_a20,
author = {Rohn, Ji\v{r}{\'\i}},
title = {Checking positive definiteness or stability of symmetric interval matrices is {NP-hard}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {795--797},
year = {1994},
volume = {35},
number = {4},
mrnumber = {1321250},
zbl = {0818.65032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994_35_4_a20/}
}
TY - JOUR AU - Rohn, Jiří TI - Checking positive definiteness or stability of symmetric interval matrices is NP-hard JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 795 EP - 797 VL - 35 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1994_35_4_a20/ LA - en ID - CMUC_1994_35_4_a20 ER -
Rohn, Jiří. Checking positive definiteness or stability of symmetric interval matrices is NP-hard. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 4, pp. 795-797. http://geodesic.mathdoc.fr/item/CMUC_1994_35_4_a20/