Boundary value problems for higher order ordinary differential equations
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 3, pp. 451-466
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $f : [a,b] \times \Bbb R^{n+1} \rightarrow \Bbb R$ be a Carath'{e}odory's function. Let $ \{t_{h}\} $, with $t_{h} \in [a,b]$, and $\{x_{h}\}$ be two real sequences. In this paper, the family of boundary value problems $$ \cases x^{(k)} = f \left( t,x,x',\ldots ,x^{(n)} \right) \ x^{(i)}(t_{i}) = x_{i} \,, \quad i=0,1, \ldots , k-1 \endcases \qquad (k=n+1,n+2,n+3,\ldots ) $$ is considered. It is proved that these boundary value problems admit at least a solution for each $k \geq \nu$, where $\nu \geq n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\{t_{h}\}$, are pointed out. Similar results are also proved for the Picard problem.
Let $f : [a,b] \times \Bbb R^{n+1} \rightarrow \Bbb R$ be a Carath'{e}odory's function. Let $ \{t_{h}\} $, with $t_{h} \in [a,b]$, and $\{x_{h}\}$ be two real sequences. In this paper, the family of boundary value problems $$ \cases x^{(k)} = f \left( t,x,x',\ldots ,x^{(n)} \right) \ x^{(i)}(t_{i}) = x_{i} \,, \quad i=0,1, \ldots , k-1 \endcases \qquad (k=n+1,n+2,n+3,\ldots ) $$ is considered. It is proved that these boundary value problems admit at least a solution for each $k \geq \nu$, where $\nu \geq n+1$ is a suitable integer. Some particular cases, obtained by specializing the sequence $\{t_{h}\}$, are pointed out. Similar results are also proved for the Picard problem.
Classification :
34A12, 34B10, 34B15
Keywords: higher order ordinary differential equations; Nicoletti problem; Picard \newline problem
Keywords: higher order ordinary differential equations; Nicoletti problem; Picard \newline problem
@article{CMUC_1994_35_3_a3,
author = {Majorana, Armando and Marano, Salvatore A.},
title = {Boundary value problems for higher order ordinary differential equations},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {451--466},
year = {1994},
volume = {35},
number = {3},
mrnumber = {1307273},
zbl = {0809.34034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994_35_3_a3/}
}
TY - JOUR AU - Majorana, Armando AU - Marano, Salvatore A. TI - Boundary value problems for higher order ordinary differential equations JO - Commentationes Mathematicae Universitatis Carolinae PY - 1994 SP - 451 EP - 466 VL - 35 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1994_35_3_a3/ LA - en ID - CMUC_1994_35_3_a3 ER -
%0 Journal Article %A Majorana, Armando %A Marano, Salvatore A. %T Boundary value problems for higher order ordinary differential equations %J Commentationes Mathematicae Universitatis Carolinae %D 1994 %P 451-466 %V 35 %N 3 %U http://geodesic.mathdoc.fr/item/CMUC_1994_35_3_a3/ %G en %F CMUC_1994_35_3_a3
Majorana, Armando; Marano, Salvatore A. Boundary value problems for higher order ordinary differential equations. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 3, pp. 451-466. http://geodesic.mathdoc.fr/item/CMUC_1994_35_3_a3/