The area formula for $W^{1,n}$-mappings
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 291-298
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $f$ be a mapping in the Sobolev space $W^{1,n}(\Omega,\bold R^n)$. Then the change of variables, or area formula holds for $f$ provided removing from counting into the multiplicity function the set where $f$ is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.
Let $f$ be a mapping in the Sobolev space $W^{1,n}(\Omega,\bold R^n)$. Then the change of variables, or area formula holds for $f$ provided removing from counting into the multiplicity function the set where $f$ is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.
Classification :
26B15, 26B20, 28A75, 30C65, 46E35
Keywords: Sobolev spaces; change of variables; area formula; Hölder continuity
Keywords: Sobolev spaces; change of variables; area formula; Hölder continuity
@article{CMUC_1994_35_2_a9,
author = {Mal\'y, Jan},
title = {The area formula for $W^{1,n}$-mappings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {291--298},
year = {1994},
volume = {35},
number = {2},
mrnumber = {1286576},
zbl = {0812.30006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994_35_2_a9/}
}
Malý, Jan. The area formula for $W^{1,n}$-mappings. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 291-298. http://geodesic.mathdoc.fr/item/CMUC_1994_35_2_a9/