Cardinal invariants and compactifications
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 403-408
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that every compact space $X$ is a Čech-Stone compactification of a normal subspace of cardinality at most $d(X)^{t(X)}$, and some facts about cardinal invariants of compact spaces.
We prove that every compact space $X$ is a Čech-Stone compactification of a normal subspace of cardinality at most $d(X)^{t(X)}$, and some facts about cardinal invariants of compact spaces.
@article{CMUC_1994_35_2_a20,
author = {Gryzlov, A.},
title = {Cardinal invariants and compactifications},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {403--408},
year = {1994},
volume = {35},
number = {2},
mrnumber = {1286587},
zbl = {0807.54005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994_35_2_a20/}
}
Gryzlov, A. Cardinal invariants and compactifications. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 403-408. http://geodesic.mathdoc.fr/item/CMUC_1994_35_2_a20/