On function spaces of Corson-compact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 347-356
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We apply elementary substructures to characterize the space $C_p(X)$ for Corson-compact spaces. As a result, we prove that a compact space $X$ is Corson-compact, if $C_p(X)$ can be represented as a continuous image of a closed subspace of $(L_{\tau })^{\omega }\times Z$, where $Z$ is compact and $L_{\tau }$ denotes the canonical Lindelöf space of cardinality $\tau $ with one non-isolated point. This answers a question of Archangelskij [2].
We apply elementary substructures to characterize the space $C_p(X)$ for Corson-compact spaces. As a result, we prove that a compact space $X$ is Corson-compact, if $C_p(X)$ can be represented as a continuous image of a closed subspace of $(L_{\tau })^{\omega }\times Z$, where $Z$ is compact and $L_{\tau }$ denotes the canonical Lindelöf space of cardinality $\tau $ with one non-isolated point. This answers a question of Archangelskij [2].
Classification :
54C35, 54D30
Keywords: function spaces; Corson-compact spaces; elementary substructures
Keywords: function spaces; Corson-compact spaces; elementary substructures
@article{CMUC_1994_35_2_a14,
author = {Bandlow, Ingo},
title = {On function spaces of {Corson-compact} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {347--356},
year = {1994},
volume = {35},
number = {2},
mrnumber = {1286581},
zbl = {0835.54016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994_35_2_a14/}
}
Bandlow, Ingo. On function spaces of Corson-compact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 2, pp. 347-356. http://geodesic.mathdoc.fr/item/CMUC_1994_35_2_a14/