Rectangular covers of products missing diagonals
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 1, pp. 147-153
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give a characterization of a paracompact $\Sigma$-space to have a $G_\delta$-diagonal in terms of three rectangular covers of $X^2\setminus\Delta$. Moreover, we show that a local property and a global property of a space $X$ are given by the orthocompactness of $(X\times\beta X)\setminus\Delta$.
We give a characterization of a paracompact $\Sigma$-space to have a $G_\delta$-diagonal in terms of three rectangular covers of $X^2\setminus\Delta$. Moreover, we show that a local property and a global property of a space $X$ are given by the orthocompactness of $(X\times\beta X)\setminus\Delta$.
Classification :
54B10, 54D20, 54E18
Keywords: $\Sigma$-space; $G_\delta$-diagonal; $\sigma$-closure-preserving; $\sigma$-cushioned; rectangular cover; \newline orthocompact; metacompact; Fréchet space
Keywords: $\Sigma$-space; $G_\delta$-diagonal; $\sigma$-closure-preserving; $\sigma$-cushioned; rectangular cover; \newline orthocompact; metacompact; Fréchet space
@article{CMUC_1994_35_1_a13,
author = {Yajima, Yukinobu},
title = {Rectangular covers of products missing diagonals},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {147--153},
year = {1994},
volume = {35},
number = {1},
mrnumber = {1292590},
zbl = {0804.54010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994_35_1_a13/}
}
Yajima, Yukinobu. Rectangular covers of products missing diagonals. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 1, pp. 147-153. http://geodesic.mathdoc.fr/item/CMUC_1994_35_1_a13/