On tempered convolution operators
Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 1, pp. 1-7
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
\font\psaci=rsfs10 \font\ppsaci=rsfs7 In this paper we show that if $S$ is a convolution operator in $\text{\ppsaci S}^{\,\, \prime }$, and $S\ast \text{\ppsaci S}^{\,\, \prime }=\text{\ppsaci S}^{\,\, \prime }$, then the zeros of the Fourier transform of $S$ are of bounded order. Then we discuss relations between the topologies of the space $\text{\psaci O}_c^{\, \prime }$ of convolution operators on $\text{\ppsaci S}^{\,\, \prime }$. Finally, we give sufficient conditions for convergence in the space of convolution operators in $\text{\ppsaci S}^{\,\, \prime }$ and in its dual.
\font\psaci=rsfs10 \font\ppsaci=rsfs7 In this paper we show that if $S$ is a convolution operator in $\text{\ppsaci S}^{\,\, \prime }$, and $S\ast \text{\ppsaci S}^{\,\, \prime }=\text{\ppsaci S}^{\,\, \prime }$, then the zeros of the Fourier transform of $S$ are of bounded order. Then we discuss relations between the topologies of the space $\text{\psaci O}_c^{\, \prime }$ of convolution operators on $\text{\ppsaci S}^{\,\, \prime }$. Finally, we give sufficient conditions for convergence in the space of convolution operators in $\text{\ppsaci S}^{\,\, \prime }$ and in its dual.
Classification :
46F05, 46F10, 46F12
Keywords: tempered distribution; convolution operator; Fourier transform; convergence of sequences
Keywords: tempered distribution; convolution operator; Fourier transform; convergence of sequences
@article{CMUC_1994_35_1_a0,
author = {Abdullah, Saleh},
title = {On tempered convolution operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--7},
year = {1994},
volume = {35},
number = {1},
mrnumber = {1292577},
zbl = {0807.46036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1994_35_1_a0/}
}
Abdullah, Saleh. On tempered convolution operators. Commentationes Mathematicae Universitatis Carolinae, Tome 35 (1994) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/CMUC_1994_35_1_a0/