Sacks forcing collapses $\frak c$ to $\frak b$
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 4, pp. 707-710
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We shall prove that Sacks algebra is nowhere $(\frak b, \frak c, \frak c)$-distributive, which implies that Sacks forcing collapses $\frak c$ to $\frak b$.
We shall prove that Sacks algebra is nowhere $(\frak b, \frak c, \frak c)$-distributive, which implies that Sacks forcing collapses $\frak c$ to $\frak b$.
Classification :
03C25, 03E25, 03E40, 03G05, 06A07, 06E05
Keywords: perfect tree; distributivity of Boolean algebra; almost disjoint refinement
Keywords: perfect tree; distributivity of Boolean algebra; almost disjoint refinement
@article{CMUC_1993_34_4_a8,
author = {Simon, Petr},
title = {Sacks forcing collapses $\frak c$ to $\frak b$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {707--710},
year = {1993},
volume = {34},
number = {4},
mrnumber = {1263799},
zbl = {0797.03053},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_4_a8/}
}
Simon, Petr. Sacks forcing collapses $\frak c$ to $\frak b$. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 4, pp. 707-710. http://geodesic.mathdoc.fr/item/CMUC_1993_34_4_a8/