The index ${}_2F_1$-transform of generalized functions
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 4, pp. 657-671
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper the index transformation $$ F(\tau ) = \int_{0}^{\infty} f(t) {}_{2}F_{1}( \mu + \frac{1}{2} + i \tau , \mu + \frac{1}{2} - i \tau ; \mu + 1; -t ) t^{\alpha} \, dt $$ ${}_{2}F_{1}( \mu + \frac{1}{2} + i \tau , \mu + \frac{1}{2} - i \tau ; \mu + 1; -t ) $ being the Gauss hypergeometric function, is defined on certain space of generalized functions and its inversion formula established for distributions of compact support on ${\bold I} = (0, \infty )$.
In this paper the index transformation $$ F(\tau ) = \int_{0}^{\infty} f(t) {}_{2}F_{1}( \mu + \frac{1}{2} + i \tau , \mu + \frac{1}{2} - i \tau ; \mu + 1; -t ) t^{\alpha} \, dt $$ ${}_{2}F_{1}( \mu + \frac{1}{2} + i \tau , \mu + \frac{1}{2} - i \tau ; \mu + 1; -t ) $ being the Gauss hypergeometric function, is defined on certain space of generalized functions and its inversion formula established for distributions of compact support on ${\bold I} = (0, \infty )$.
Classification :
33C90, 44A15, 44A20, 46F12
Keywords: hypergeometric function; index integral transform; generalized functions
Keywords: hypergeometric function; index integral transform; generalized functions
@article{CMUC_1993_34_4_a4,
author = {Hayek, N. and Gonz\'alez, B. J.},
title = {The index ${}_2F_1$-transform of generalized functions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {657--671},
year = {1993},
volume = {34},
number = {4},
mrnumber = {1263795},
zbl = {0793.46019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_4_a4/}
}
Hayek, N.; González, B. J. The index ${}_2F_1$-transform of generalized functions. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 4, pp. 657-671. http://geodesic.mathdoc.fr/item/CMUC_1993_34_4_a4/