On variational approach to the Hamilton-Jacobi PDE
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 4, pp. 613-633
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation $(\ast )$ there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.
In this paper we construct a minimizing sequence for the problem (1). In particular, we show that for any subsolution of the Hamilton-Jacobi equation $(\ast )$ there exists a minimizing sequence weakly convergent to this subsolution. The variational problem (1) arises from the theory of computer vision equations.
Classification :
35E99, 35F20, 49L20, 49L99, 49R50
Keywords: Young measures; computer vision equations
Keywords: Young measures; computer vision equations
@article{CMUC_1993_34_4_a1,
author = {Chabrowski, J. and Zhang, Kewei},
title = {On variational approach to the {Hamilton-Jacobi} {PDE}},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {613--633},
year = {1993},
volume = {34},
number = {4},
mrnumber = {1263792},
zbl = {0802.49021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_4_a1/}
}
Chabrowski, J.; Zhang, Kewei. On variational approach to the Hamilton-Jacobi PDE. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 4, pp. 613-633. http://geodesic.mathdoc.fr/item/CMUC_1993_34_4_a1/