On direct sums of $\Cal B^{(1)}$-groups
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 587-591
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A necessary and sufficient condition is given for the direct sum of two $\Cal B^{(1)}$-groups to be (quasi-isomorphic to) a $\Cal B^{(1)}$-group. A $\Cal B^{(1)}$-group is a torsionfree Abelian group that can be realized as the quotient of a finite direct sum of rank 1 groups modulo a pure subgroup of rank 1.
A necessary and sufficient condition is given for the direct sum of two $\Cal B^{(1)}$-groups to be (quasi-isomorphic to) a $\Cal B^{(1)}$-group. A $\Cal B^{(1)}$-group is a torsionfree Abelian group that can be realized as the quotient of a finite direct sum of rank 1 groups modulo a pure subgroup of rank 1.
@article{CMUC_1993_34_3_a21,
author = {Metelli, Claudia},
title = {On direct sums of $\Cal B^{(1)}$-groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {587--591},
year = {1993},
volume = {34},
number = {3},
mrnumber = {1243091},
zbl = {0787.20031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_3_a21/}
}
Metelli, Claudia. On direct sums of $\Cal B^{(1)}$-groups. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 3, pp. 587-591. http://geodesic.mathdoc.fr/item/CMUC_1993_34_3_a21/