Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1\le p\infty)$ and Grothendieck space
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 265-273
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we show the representation of Köthe dual of Banach sequence spaces $\ell _p[X]$ $(1\leq p \infty )$ and give a characterization of that the spaces $\ell _p[X]$ $(1 p \infty )$ are Grothendieck spaces.
In this paper, we show the representation of Köthe dual of Banach sequence spaces $\ell _p[X]$ $(1\leq p \infty )$ and give a characterization of that the spaces $\ell _p[X]$ $(1 p \infty )$ are Grothendieck spaces.
Classification :
46A45, 46B16, 46B20, 46B28, 46B45
Keywords: vector-valued sequence space; Köthe dual; GAK-space; Grothendieck space
Keywords: vector-valued sequence space; Köthe dual; GAK-space; Grothendieck space
@article{CMUC_1993_34_2_a9,
author = {Wu, Congxin and Bu, Qingying},
title = {K\"othe dual of {Banach} sequence spaces $\ell_p[X]$ $(1\le p<\infty)$ and {Grothendieck} space},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {265--273},
year = {1993},
volume = {34},
number = {2},
mrnumber = {1241736},
zbl = {0785.46009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a9/}
}
TY - JOUR AU - Wu, Congxin AU - Bu, Qingying TI - Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1\le p<\infty)$ and Grothendieck space JO - Commentationes Mathematicae Universitatis Carolinae PY - 1993 SP - 265 EP - 273 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a9/ LA - en ID - CMUC_1993_34_2_a9 ER -
%0 Journal Article %A Wu, Congxin %A Bu, Qingying %T Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1\le p<\infty)$ and Grothendieck space %J Commentationes Mathematicae Universitatis Carolinae %D 1993 %P 265-273 %V 34 %N 2 %U http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a9/ %G en %F CMUC_1993_34_2_a9
Wu, Congxin; Bu, Qingying. Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1\le p<\infty)$ and Grothendieck space. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 265-273. http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a9/