On the metric dimension of converging sequences
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 367-373
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the paper, some kind of independence between upper metric dimension and natural order of converging sequences is shown --- for any sequence converging to zero there is a greater sequence with an arbitrary ($\leqslant 1$) upper dimension. On the other hand there is a relationship to summability of series --- the set of elements of any positive summable series must have metric dimension less than or equal to $1/2$.
In the paper, some kind of independence between upper metric dimension and natural order of converging sequences is shown --- for any sequence converging to zero there is a greater sequence with an arbitrary ($\leqslant 1$) upper dimension. On the other hand there is a relationship to summability of series --- the set of elements of any positive summable series must have metric dimension less than or equal to $1/2$.
Classification :
40A05, 40J05, 54E35, 54E45, 54F45, 54F50
Keywords: metric dimension; converging sequences; summability of series
Keywords: metric dimension; converging sequences; summability of series
@article{CMUC_1993_34_2_a19,
author = {Mi\v{s}{\'\i}k, Ladislav, Jr. and \v{Z}\'a\v{c}ik, Tibor},
title = {On the metric dimension of converging sequences},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {367--373},
year = {1993},
volume = {34},
number = {2},
mrnumber = {1241746},
zbl = {0845.54026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a19/}
}
TY - JOUR AU - Mišík, Ladislav, Jr. AU - Žáčik, Tibor TI - On the metric dimension of converging sequences JO - Commentationes Mathematicae Universitatis Carolinae PY - 1993 SP - 367 EP - 373 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a19/ LA - en ID - CMUC_1993_34_2_a19 ER -
Mišík, Ladislav, Jr.; Žáčik, Tibor. On the metric dimension of converging sequences. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 367-373. http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a19/