The existence of local homeomorphisms of degree $n>1$ on local dendrites
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 363-366
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree $n$ for each positive integer $n$.
In this paper we characterize local dendrites which are the images of themselves under local homeomorphisms of degree $n$ for each positive integer $n$.
Classification :
54C10, 54F15, 54F20, 54F50
Keywords: local homeomorphism; map of degree $n$; continuum; local dendrite; dendrite; graph
Keywords: local homeomorphism; map of degree $n$; continuum; local dendrite; dendrite; graph
@article{CMUC_1993_34_2_a18,
author = {Miklos, S.},
title = {The existence of local homeomorphisms of degree $n>1$ on local dendrites},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {363--366},
year = {1993},
volume = {34},
number = {2},
mrnumber = {1241745},
zbl = {0809.54028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a18/}
}
Miklos, S. The existence of local homeomorphisms of degree $n>1$ on local dendrites. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 363-366. http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a18/