On a class of commutative groupoids determined by their associativity triples
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 199-201
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $G = G(\cdot)$ be a commutative groupoid such that $\{(a,b,c) \in G^3$; $a\cdot bc \ne ab\cdot c\} = \{(a,b,c) \in G^3$; $a=b\ne c$ or $ a \ne b =c \}$. Then $G$ is determined uniquely up to isomorphism and if it is finite, then $\operatorname{card}(G) = 2^i$ for an integer $i\ge 0$.
Let $G = G(\cdot)$ be a commutative groupoid such that $\{(a,b,c) \in G^3$; $a\cdot bc \ne ab\cdot c\} = \{(a,b,c) \in G^3$; $a=b\ne c$ or $ a \ne b =c \}$. Then $G$ is determined uniquely up to isomorphism and if it is finite, then $\operatorname{card}(G) = 2^i$ for an integer $i\ge 0$.
Classification :
05B15, 05E99, 20L05, 20N02
Keywords: commutative groupoid; associative triples
Keywords: commutative groupoid; associative triples
@article{CMUC_1993_34_2_a0,
author = {Dr\'apal, Ale\v{s}},
title = {On a class of commutative groupoids determined by their associativity triples},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {199--201},
year = {1993},
volume = {34},
number = {2},
mrnumber = {1241727},
zbl = {0787.20040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a0/}
}
TY - JOUR AU - Drápal, Aleš TI - On a class of commutative groupoids determined by their associativity triples JO - Commentationes Mathematicae Universitatis Carolinae PY - 1993 SP - 199 EP - 201 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a0/ LA - en ID - CMUC_1993_34_2_a0 ER -
Drápal, Aleš. On a class of commutative groupoids determined by their associativity triples. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 2, pp. 199-201. http://geodesic.mathdoc.fr/item/CMUC_1993_34_2_a0/