Extreme compact operators from Orlicz spaces to $C(\Omega)$
Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 1, pp. 63-77
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $E^{\varphi }(\mu )$ be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator $T:E^{\varphi }(\mu )\rightarrow C(\Omega )$ is extreme if and only if $T^{\ast }\omega \in \operatorname{Ext}\, B((E^{\varphi }(\mu ))^{\ast })$ on a dense subset of $\Omega $, where $\Omega $ is a compact Hausdorff topological space and $\langle T^{\ast } \omega ,x\rangle=(T x)(\omega )$. This is done via the description of the extreme points of the space of continuous functions $C(\Omega ,L^{\varphi }(\mu ))$, $L^{\varphi }(\mu )$ being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.
Let $E^{\varphi }(\mu )$ be the subspace of finite elements of an Orlicz space endowed with the Luxemburg norm. The main theorem says that a compact linear operator $T:E^{\varphi }(\mu )\rightarrow C(\Omega )$ is extreme if and only if $T^{\ast }\omega \in \operatorname{Ext}\, B((E^{\varphi }(\mu ))^{\ast })$ on a dense subset of $\Omega $, where $\Omega $ is a compact Hausdorff topological space and $\langle T^{\ast } \omega ,x\rangle=(T x)(\omega )$. This is done via the description of the extreme points of the space of continuous functions $C(\Omega ,L^{\varphi }(\mu ))$, $L^{\varphi }(\mu )$ being an Orlicz space equipped with the Orlicz norm (conjugate to the Luxemburg one). There is also given a theorem on closedness of the set of extreme points of the unit ball with respect to the Orlicz norm.
Classification :
03D55, 03E30, 03E70, 03H05, 46B20, 46E30
Keywords: extreme points; vector valued continuous functions; compact linear operators; Orlicz spaces
Keywords: extreme points; vector valued continuous functions; compact linear operators; Orlicz spaces
@article{CMUC_1993_34_1_a6,
author = {Chen, Shutao and Wis{\l}a, Marek},
title = {Extreme compact operators from {Orlicz} spaces to $C(\Omega)$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {63--77},
year = {1993},
volume = {34},
number = {1},
mrnumber = {1240204},
zbl = {0801.46027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1993_34_1_a6/}
}
TY - JOUR AU - Chen, Shutao AU - Wisła, Marek TI - Extreme compact operators from Orlicz spaces to $C(\Omega)$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 1993 SP - 63 EP - 77 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMUC_1993_34_1_a6/ LA - en ID - CMUC_1993_34_1_a6 ER -
Chen, Shutao; Wisła, Marek. Extreme compact operators from Orlicz spaces to $C(\Omega)$. Commentationes Mathematicae Universitatis Carolinae, Tome 34 (1993) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/CMUC_1993_34_1_a6/