Entropy-like functionals: conceptual background and some results
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 645-660 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe a conceptual approach which provides a unified view of various entropy-like functionals on the class of semimetric spaces, endowed with a bounded measure. The entropy $E$ considered in the author's previous articles is modified so as to assume finite values for a fairly wide class of spaces which fail to be totally bounded.
We describe a conceptual approach which provides a unified view of various entropy-like functionals on the class of semimetric spaces, endowed with a bounded measure. The entropy $E$ considered in the author's previous articles is modified so as to assume finite values for a fairly wide class of spaces which fail to be totally bounded.
Classification : 94A17
Keywords: entropy-like functionals; Hartley value of a piece of information; moderate $E$-entropy
@article{CMUC_1992_33_4_a9,
     author = {Kat\v{e}tov, Miroslav},
     title = {Entropy-like functionals: conceptual background and some results},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {645--660},
     year = {1992},
     volume = {33},
     number = {4},
     mrnumber = {1240186},
     zbl = {0777.94006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a9/}
}
TY  - JOUR
AU  - Katětov, Miroslav
TI  - Entropy-like functionals: conceptual background and some results
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 645
EP  - 660
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a9/
LA  - en
ID  - CMUC_1992_33_4_a9
ER  - 
%0 Journal Article
%A Katětov, Miroslav
%T Entropy-like functionals: conceptual background and some results
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 645-660
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a9/
%G en
%F CMUC_1992_33_4_a9
Katětov, Miroslav. Entropy-like functionals: conceptual background and some results. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 645-660. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a9/

[H28] Hartley S.V.L.: Transmission of information. Bell System Tech. J. 7 , no. 3 (1978), 535-563.

[K80a] Katětov M.: Extensions of the Shannon entropy to semimetrized measure spaces. Comment. Math. Univ. Carolinae 21 (1980), 171-192. | MR

[K80b] Katětov M.: Correction to ``Extensions of the Shannon entropy to semimetrized measure spaces''. Comment. Math. Univ. Carolinae 21 (1980), 825-830. | MR | Zbl

[K83] Katětov M.: Extended Shannon entropies I. Czechoslovak Math. J. 33 (108) (1983), 546-601. | MR

[K85] Katětov M.: Extended Shannon entropies II. Czechoslovak Math. J. 35 (110) (1985), 565-616. | MR

[K86a] Katětov M.: On extended Shannon entropies and the epsilon entropy. Comment. Math. Univ. Carolinae 27 (1986), 519-534. | MR

[K86b] Katětov M.: On the Rényi dimension. Comment. Math. Univ. Carolinae 27 (1986), 741-753. | MR

[K87] Katětov M.: On dimensions of semimetrized measure spaces. Comment. Math. Univ. Carolinae 28 (1987), 399-411. | MR

[K88] Katětov M.: On the differential and residual entropy. Comment. Math. Univ. Carolinae 29 (1988), 319-349. | MR

[K90] Katětov M.: On entropy-like functionals and codes for metrized probability spaces I. Comment. Math. Univ. Carolinae 31 (1990), 49-66. | MR

[K92] Katětov M.: On entropy-like functionals and codes for metrized probability spaces II. Comment. Math. Univ. Carolinae 33 (1992), 79-95. | MR

[KT59] Kolgomorov A., Tihomirov V.: $\varepsilon $-entropy and $\varepsilon $-capacity of sets in function spaces (in Russian). Uspehi Mat. Nauk 14 , no. 2 (1959), 3-86. | MR

[PRR67] Posner E.C., Rodemich H., Rumsey H., Jr.: Epsilon entropy of stochastic processes. Ann. Math. Statist. 38 (1967), 1000-1020. | MR | Zbl

[R59] Rényi A.: On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hungar. 10 (1959), 193-215. | MR

[S48] Shannon C.E.: A mathematical theory of communication. Bell System Tech. J. 27 (1948), 375-423, 623-656. | MR | Zbl