On a weak Freudenthal spectral theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 631-643 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be an Archimedean Riesz space and $\Cal P(X)$ its Boolean algebra of all band projections, and put $\Cal P_{e}=\{P e:P\in \Cal P(X)\}$ and $\Cal B_{e}=\{x\in X: x\wedge (e-x)=0\}$, $e\in X^+$. $X$ is said to have Weak Freudenthal Property (\text{$\operatorname{WFP}$}) provided that for every $e\in X^+$ the lattice $lin\, \Cal P_{e}$ is order dense in the principal band $e^{d d}$. This notion is compared with strong and weak forms of Freudenthal spectral theorem in Archimedean Riesz spaces, studied by Veksler and Lavrič, respectively. \text{$\operatorname{WFP}$} is equivalent to $X^+$-denseness of $\Cal P_{e}$ in $\Cal B_{e}$ for every $e\in X^+$, and every Riesz space with sufficiently many projections has \text{$\operatorname{WFP}$} (THEOREM).
Let $X$ be an Archimedean Riesz space and $\Cal P(X)$ its Boolean algebra of all band projections, and put $\Cal P_{e}=\{P e:P\in \Cal P(X)\}$ and $\Cal B_{e}=\{x\in X: x\wedge (e-x)=0\}$, $e\in X^+$. $X$ is said to have Weak Freudenthal Property (\text{$\operatorname{WFP}$}) provided that for every $e\in X^+$ the lattice $lin\, \Cal P_{e}$ is order dense in the principal band $e^{d d}$. This notion is compared with strong and weak forms of Freudenthal spectral theorem in Archimedean Riesz spaces, studied by Veksler and Lavrič, respectively. \text{$\operatorname{WFP}$} is equivalent to $X^+$-denseness of $\Cal P_{e}$ in $\Cal B_{e}$ for every $e\in X^+$, and every Riesz space with sufficiently many projections has \text{$\operatorname{WFP}$} (THEOREM).
Classification : 06B10, 06E99, 46A40
Keywords: Freudenthal spectral theorem; band; band projection; Boolean algebra; disjointness
@article{CMUC_1992_33_4_a8,
     author = {W\'ojtowicz, Marek},
     title = {On a weak {Freudenthal} spectral theorem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {631--643},
     year = {1992},
     volume = {33},
     number = {4},
     mrnumber = {1240185},
     zbl = {0777.46006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a8/}
}
TY  - JOUR
AU  - Wójtowicz, Marek
TI  - On a weak Freudenthal spectral theorem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 631
EP  - 643
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a8/
LA  - en
ID  - CMUC_1992_33_4_a8
ER  - 
%0 Journal Article
%A Wójtowicz, Marek
%T On a weak Freudenthal spectral theorem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 631-643
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a8/
%G en
%F CMUC_1992_33_4_a8
Wójtowicz, Marek. On a weak Freudenthal spectral theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 631-643. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a8/

[1] Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces. New York-London, Academic Press, 1978. | MR | Zbl

[2] Curtis P.C.: A note concerning certain product spaces. Arch. Math. 11 (1960), 50-52. | MR | Zbl

[3] Duhoux M., Meyer M.: Extended orthomorphisms on Archimedean Riesz spaces. Annali di Matematica pura ed appl. 33 (1983), 193-236. | MR | Zbl

[4] Efimov B., Engelking R.: Remarks on dyadic spaces II. Coll. Math. 13 (1965), 181-197. | MR | Zbl

[5] Lavrič B.: On Freudenthal's spectral theorem. Indag. Math. 48 (1986), 411-421. | MR | Zbl

[6] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North-Holland, Amsterdam and London, 1971.

[7] Semadeni Z.: Banach Spaces of Continuous Functions. Polish Scientific Publishers, Warszawa, 1971. | MR | Zbl

[8] Veksler A.I.: Projection properties of linear lattices and Freudenthal's theorem (in Russian). Math. Nachr. 74 (1976), 7-25. | MR

[9] Zaanen A.C.: Riesz Spaces II. North-Holland, Amsterdam, New York-Oxford, 1983. | MR | Zbl