Multivalued pseudo-contractive mappings defined on unbounded sets in Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 625-630 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a real Banach space. A multivalued operator $T$ from $K$ into $2^X$ is said to be pseudo-contractive if for every $x,y$ in $K$, $u\in T(x)$, $v\in T(y)$ and all $r>0$, $\|x-y\|\leq \|(1+r)(x-y)-r(u-v)\|$. Denote by $G(z,w)$ the set $\{u\in K :\|u-w\|\leq \|u-z\|\}$. Suppose every bounded closed and convex subset of $X$ has the fixed point property with respect to nonexpansive selfmappings. Now if $T$ is a Lipschitzian and pseudo-contractive mapping from $K$ into the family of closed and bounded subsets of $K$ so that the set $G(z,w)$ is bounded for some $z\in K$ and some $w\in T(z)$, then $T$ has a fixed point in $K$.
Let $X$ be a real Banach space. A multivalued operator $T$ from $K$ into $2^X$ is said to be pseudo-contractive if for every $x,y$ in $K$, $u\in T(x)$, $v\in T(y)$ and all $r>0$, $\|x-y\|\leq \|(1+r)(x-y)-r(u-v)\|$. Denote by $G(z,w)$ the set $\{u\in K :\|u-w\|\leq \|u-z\|\}$. Suppose every bounded closed and convex subset of $X$ has the fixed point property with respect to nonexpansive selfmappings. Now if $T$ is a Lipschitzian and pseudo-contractive mapping from $K$ into the family of closed and bounded subsets of $K$ so that the set $G(z,w)$ is bounded for some $z\in K$ and some $w\in T(z)$, then $T$ has a fixed point in $K$.
Classification : 47H04, 47H09, 47H10
Keywords: pseudo-contractive mappings
@article{CMUC_1992_33_4_a7,
     author = {Morales, Claudio H.},
     title = {Multivalued pseudo-contractive mappings defined on unbounded sets in {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {625--630},
     year = {1992},
     volume = {33},
     number = {4},
     mrnumber = {1240184},
     zbl = {0794.47038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a7/}
}
TY  - JOUR
AU  - Morales, Claudio H.
TI  - Multivalued pseudo-contractive mappings defined on unbounded sets in Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 625
EP  - 630
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a7/
LA  - en
ID  - CMUC_1992_33_4_a7
ER  - 
%0 Journal Article
%A Morales, Claudio H.
%T Multivalued pseudo-contractive mappings defined on unbounded sets in Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 625-630
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a7/
%G en
%F CMUC_1992_33_4_a7
Morales, Claudio H. Multivalued pseudo-contractive mappings defined on unbounded sets in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 625-630. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a7/

[1] Browder F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Amer. Math. Soc. 73 (1967), 875-882. | MR | Zbl

[2] Canetti A., Marino G., Pietramala P.: Fixed point theorems for multivalued mappings in Banach spaces. Nonlinear Analysis, T.M.A. 17 (199011-20). | MR | Zbl

[3] Downing D., Kirk W.A.: Fixed point theorems for set-valued mappings in metric and Banach spaces. Math. Japonica 22 (1977), 99-112. | MR | Zbl

[4] Goebel K., Kuczumow T.: A contribution to the theory of nonexpansive mappings. preprint. | MR | Zbl

[5] Kato T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967), 508-520. | MR | Zbl

[6] Kirk W.A., Ray W.O.: Fixed point theorems for mappings defined on unbounded sets in Banach spaces. Studia Math 64 (1979), 127-138. | MR | Zbl

[7] Morales C.H.: Pseudo-contractive mappings and the Leray-Schauder boundary condition. Comment. Math. Univ. Carolinae 20 (1979), 745-756. | MR | Zbl

[8] Morales C.H.: Remarks on pseudo-contractive mappings. J. Math. Anal. Appl. 87 (1982), 158-164. | Zbl

[9] Morales C.H.: Set-valued mappings in Banach spaces. Houston J. Math. 9 (1983), 245-253. | MR | Zbl

[10] Nadler S.B., Jr.: Multi-valued contraction mappings. Pacific J. Math. 30 (1969), 475-488. | MR | Zbl

[11] Ray W.O.: The fixed point property and unbounded sets in Hilbert space. Trans. Amer. Math. Soc. 258 (1980), 531-537. | MR | Zbl

[12] Ray W.O.: Zeros of accretive operators defined on unbounded sets. Houston J. Math. 5 (1979), 133-139. | MR | Zbl