Simple construction of spaces without the Hahn-Banach extension property
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 623-624 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An elementary construction for an abundance of vector topologies $\xi $ on a fixed infinite dimensional vector space $E$ such that $(E,\xi )$ has not the Hahn-Banach extension property but the topological dual $(E,\xi )'$ separates points of $E$ from zero is given.
An elementary construction for an abundance of vector topologies $\xi $ on a fixed infinite dimensional vector space $E$ such that $(E,\xi )$ has not the Hahn-Banach extension property but the topological dual $(E,\xi )'$ separates points of $E$ from zero is given.
Classification : 46A22
Keywords: Hahn-Banach extension property; topological vector space
@article{CMUC_1992_33_4_a6,
     author = {Kakol, Jerzy},
     title = {Simple construction of spaces without the {Hahn-Banach} extension property},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {623--624},
     year = {1992},
     volume = {33},
     number = {4},
     mrnumber = {1240183},
     zbl = {0777.46003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a6/}
}
TY  - JOUR
AU  - Kakol, Jerzy
TI  - Simple construction of spaces without the Hahn-Banach extension property
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 623
EP  - 624
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a6/
LA  - en
ID  - CMUC_1992_33_4_a6
ER  - 
%0 Journal Article
%A Kakol, Jerzy
%T Simple construction of spaces without the Hahn-Banach extension property
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 623-624
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a6/
%G en
%F CMUC_1992_33_4_a6
Kakol, Jerzy. Simple construction of spaces without the Hahn-Banach extension property. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 623-624. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a6/

[1] Duren P.L., Romberg R.C., Shields A.L.: Linear functionals in $H^p$-spaces with $0. J. Reine Angew. Math. 238 (1969), 32-60. MR 0259579

[2] Kalton N.J.: Basic sequences in $F$-spaces and their applications. Proc. Edinburgh Math. Soc. 19 (1974), 151-167. | MR | Zbl

[3] Kakol J.: Nonlocally convex spaces and the Hahn-Banach extension property. Bull. Acad. Polon. Sci. 33 (1985), 381-393. | MR | Zbl

[4] Klee V.: Exotic topologies for linear spaces. Proc. Symposium on General Topology and its Relations to Modern Algebra, Prague, 1961. | MR | Zbl

[5] Shapiro J.H.: Examples of proper closed weakly dense subspaces in non-locally convex $F$-spaces. Israel J. Math. 7 (1969), 369-380. | MR | Zbl

[6] Wilansky A.: Topics in Functional Analysis. Springer Verlag 45 (1967). | MR | Zbl