The product of distributions on $R^m$
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 605-614 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The fixed infinitely differentiable function $\rho (x)$ is such that $\{n\rho (n x)\}$ is a re\-gular sequence converging to the Dirac delta function $\delta $. The function $\delta _{\bold n}(\bold x)$, with $\bold x=(x_1, \dots , x_m)$ is defined by $$ \delta _{\bold n}(\bold x)=n_1 \rho (n_1 x_1)\dots n_m \rho (n_m x_m). $$ The product $f \circ g$ of two distributions $f$ and $g$ in $\mathcal D'_m$ is the distribution $h$ defined by $$ \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_1\rightarrow \infty } \dots \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_m\rightarrow \infty } \langle f_{\bold n} g_{\bold n}, \phi \rangle = \langle h, \phi \rangle, $$ provided this neutrix limit exists for all $\phi (\bold x)=\phi _1(x_1)\dots \phi _m(x_m)$, where $f_{\bold n}=f \ast \delta _{\bold n}$ and $g_{\bold n}=g\ast \delta _{\bold n}$.
The fixed infinitely differentiable function $\rho (x)$ is such that $\{n\rho (n x)\}$ is a re\-gular sequence converging to the Dirac delta function $\delta $. The function $\delta _{\bold n}(\bold x)$, with $\bold x=(x_1, \dots , x_m)$ is defined by $$ \delta _{\bold n}(\bold x)=n_1 \rho (n_1 x_1)\dots n_m \rho (n_m x_m). $$ The product $f \circ g$ of two distributions $f$ and $g$ in $\mathcal D'_m$ is the distribution $h$ defined by $$ \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_1\rightarrow \infty } \dots \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_m\rightarrow \infty } \langle f_{\bold n} g_{\bold n}, \phi \rangle = \langle h, \phi \rangle, $$ provided this neutrix limit exists for all $\phi (\bold x)=\phi _1(x_1)\dots \phi _m(x_m)$, where $f_{\bold n}=f \ast \delta _{\bold n}$ and $g_{\bold n}=g\ast \delta _{\bold n}$.
Classification : 46F10
Keywords: distribution; neutrix limit; neutrix product
@article{CMUC_1992_33_4_a4,
     author = {Lin-Zhi, Cheng and Fisher, Brian},
     title = {The product of distributions on $R^m$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {605--614},
     year = {1992},
     volume = {33},
     number = {4},
     mrnumber = {1240181},
     zbl = {0818.46035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a4/}
}
TY  - JOUR
AU  - Lin-Zhi, Cheng
AU  - Fisher, Brian
TI  - The product of distributions on $R^m$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 605
EP  - 614
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a4/
LA  - en
ID  - CMUC_1992_33_4_a4
ER  - 
%0 Journal Article
%A Lin-Zhi, Cheng
%A Fisher, Brian
%T The product of distributions on $R^m$
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 605-614
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a4/
%G en
%F CMUC_1992_33_4_a4
Lin-Zhi, Cheng; Fisher, Brian. The product of distributions on $R^m$. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 605-614. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a4/

[1] Cheng L.Z., Fisher B.: Several products of distributions on $R^m$. Proc. R. Soc. Lond. A 426 (1989), 425-439. | MR

[2] van der Corput J.G.: Introduction to the neutrix calculus. J. Analyse Math. 7 (1959-60), 291-398. | MR | Zbl

[3] Fisher B.: The product of distributions. Quart. J. Math. (2) 22 (1971), 291-298. | MR | Zbl

[4] Fisher B.: The product of the distributions $x_+^{-r-1/2}$ and $x_-^{-r-1/2}$. Proc. Camb. Phil. Soc. 71 (1972), 123-130. | MR | Zbl

[5] Fisher B.: The neutrix distribution product $x_+^{-r}\delta ^{(r-1)}(x)$. Studia Sci. Math. Hungar. 9 (1974), 439-441. | MR

[6] Fisher B., Li C.K.: On the product of distributions in $m$ variables. Jiangsu Coll. Jnl. 11 (1990), 1-10. | MR

[7] Schwartz L.: Théorie des distributions. Vol. I, II, Herman, 1957. | MR | Zbl