Problems with nonlinear boundary value conditions
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 597-604
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The existence and multiplicity results are shown for certain types of problems with nonlinear boundary value conditions.
The existence and multiplicity results are shown for certain types of problems with nonlinear boundary value conditions.
Classification :
34B15, 34L30, 47H15, 47N20
Keywords: nonlinear boundary value problems; multiple solutions; Melnikov functions
Keywords: nonlinear boundary value problems; multiple solutions; Melnikov functions
@article{CMUC_1992_33_4_a3,
author = {Fe\v{c}kan, Michal},
title = {Problems with nonlinear boundary value conditions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {597--604},
year = {1992},
volume = {33},
number = {4},
mrnumber = {1240180},
zbl = {0785.34022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a3/}
}
Fečkan, Michal. Problems with nonlinear boundary value conditions. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 597-604. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a3/
[1] Samoilenko A.M., Le Loyong Tai: On a method of study of boundary value problems with nonlinear boundary value conditions (in Russian). Ukrainian Math. Journal 42 (1990), 951-957. | MR
[2] Guckenheimer J., Holmes P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag New York (1983). | MR | Zbl
[3] Mawhin J.: Nonlinear functional analysis and periodic solutions of ordinary differential equations. in Summer School on Ordinary Differential Equations-Difford 74, Brno (1974), 37-60.
[4] Fečkan M.: Nielsen fixed point theory and nonlinear equations. to appear in Journal of Differential Equations.
[5] Chow S.-N., Hale J.K.: Methods of Bifurcations Theory. Springer-Verlag New York (1982). | MR