On the preservation of separation axioms in products
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 713-721
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give sufficient and necessary conditions to be fulfilled by a filter $\Psi $ and an ideal $\Lambda $ in order that the $\Psi $-quotient space of the $\Lambda $-ideal product space preserves $T_k$-properties ($k=0,1,2,3,3\frac{1}{2}$) (``in the sense of the \L os theorem''). Tychonoff products, box products and ultraproducts appear as special cases of the general construction.
We give sufficient and necessary conditions to be fulfilled by a filter $\Psi $ and an ideal $\Lambda $ in order that the $\Psi $-quotient space of the $\Lambda $-ideal product space preserves $T_k$-properties ($k=0,1,2,3,3\frac{1}{2}$) (``in the sense of the \L os theorem''). Tychonoff products, box products and ultraproducts appear as special cases of the general construction.
Classification :
54B10, 54D10, 54D15
Keywords: separation axioms; box product; ultraproduct; ideal product topology
Keywords: separation axioms; box product; ultraproduct; ideal product topology
@article{CMUC_1992_33_4_a16,
author = {Grulovi\'c, Milan Z. and Kurili\'c, Milo\v{s} S.},
title = {On the preservation of separation axioms in products},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {713--721},
year = {1992},
volume = {33},
number = {4},
mrnumber = {1240193},
zbl = {0786.54009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a16/}
}
TY - JOUR AU - Grulović, Milan Z. AU - Kurilić, Miloš S. TI - On the preservation of separation axioms in products JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 713 EP - 721 VL - 33 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a16/ LA - en ID - CMUC_1992_33_4_a16 ER -
Grulović, Milan Z.; Kurilić, Miloš S. On the preservation of separation axioms in products. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 713-721. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a16/
[1] Bankston P.: Ultraproducts in topology. Gen. Topology Appl. 7 (1977), 283-308. | MR | Zbl
[2] van Douwen E.K.: The box product of countably many metrizable spaces need not be normal. Fundamenta Mathematicae LXXXVIII.2 (1975), 127-132. | MR
[3] Engelking R.: General Topology. PWN - Polish Scientific Publishers, 1977. | MR | Zbl
[4] Kelly J.L.: General Topology. Springer Verlag, Graduate Texts in Mathematics 27.
[5] Knight C.J.: Box topologies. Quart. J. Math. Oxford 15 (1964), 41-54. | MR | Zbl