Keywords: frame; binary coproduct; pushout; compactness; separatedness; continuous frame; closed homomorphism; $D(\kappa)$-frame
@article{CMUC_1992_33_4_a15,
author = {Chen, Xiangdong},
title = {On binary coproducts of frames},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {699--712},
year = {1992},
volume = {33},
number = {4},
mrnumber = {1240192},
zbl = {0824.54004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a15/}
}
Chen, Xiangdong. On binary coproducts of frames. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 699-712. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a15/
[1] Banaschewski B.: Bourbaki's fixpoint lemma reconsidered. Comment. Math. Univ. Carolinae 33 (1992), 303-309. | MR | Zbl
[2] Banaschewski B.: On pushing out frames. Comment. Math. Univ. Carolinae 31 (1990), 13-21. | MR | Zbl
[3] Banaschewski B.: Compactification of frames. Math. Nachr. 149 (1990), 105-116. | MR | Zbl
[4] Banaschewski B.: Another look at the localic Tychonoff theorem. Comment. Math. Univ. Carolinae 26 (1985), 619-630. | MR
[5] Bourbaki N.: Elements of Mathematics: General Topology. Reading, Mass.: Addison-Wesley, 1966. | Zbl
[6] Chen X.: Closed Frame Homomorphisms. Doctoral Dissertation, McMaster University, 1991. | Zbl
[7] Dowker C.H., Papert D.: Paracompact frames and closed maps. Symp. Math. 16 (1975), 93-116. | MR | Zbl
[8] Dowker C.H., Strauss D.: Separation axioms for frames. Colloq. Math. Soc. János Bolyai 8 (1972), 223-240. | MR
[9] Isbell J.R.: Atomless parts of spaces. Math. Scand. 31 (1972), 5-32. | MR | Zbl
[10] Johnstone P.T.: Stone Space. Cambridge University Press, 1982. | MR
[11] Kříž I., Pultr A.: Peculiar behaviour of connected locales. Cahiers de Top. et Géom. Diff. Cat. XXX-1 (1989), 25-43. | MR
[12] Pultr A., Tozzi A.: Notes on Kuratowski-Mrówka theorems in point-free context. Cahiers de Top. et Géom. Diff. Cat. XXXIII-1 (1992), 3-14. | MR | Zbl
[13] Vermeulen J.J.C.: Some constructive results related to compactness and the (strong) Hausdorff property for locales. Category Theory, Proceedings, Como 1990, Springer LNM 1488 (1991), 401-409. | MR | Zbl