The category of uniform spaces as a completion of the category of metric spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 689-693
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A criterion for the existence of an initial completion of a concrete category $\bold K$ universal w.r.t\. finite products and subobjects is presented. For $\bold K=$ metric spaces and uniformly continuous maps this completion is the category of uniform spaces.
A criterion for the existence of an initial completion of a concrete category $\bold K$ universal w.r.t\. finite products and subobjects is presented. For $\bold K=$ metric spaces and uniformly continuous maps this completion is the category of uniform spaces.
Classification :
18A32, 18A35, 54B30, 54E15, 54E35
Keywords: universal completion; metric space; uniform space
Keywords: universal completion; metric space; uniform space
@article{CMUC_1992_33_4_a13,
author = {Ad\'amek, Ji\v{r}{\'\i} and Reiterman, Jan},
title = {The category of uniform spaces as a completion of the category of metric spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {689--693},
year = {1992},
volume = {33},
number = {4},
mrnumber = {1240190},
zbl = {0804.18001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a13/}
}
TY - JOUR AU - Adámek, Jiří AU - Reiterman, Jan TI - The category of uniform spaces as a completion of the category of metric spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 689 EP - 693 VL - 33 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a13/ LA - en ID - CMUC_1992_33_4_a13 ER -
%0 Journal Article %A Adámek, Jiří %A Reiterman, Jan %T The category of uniform spaces as a completion of the category of metric spaces %J Commentationes Mathematicae Universitatis Carolinae %D 1992 %P 689-693 %V 33 %N 4 %U http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a13/ %G en %F CMUC_1992_33_4_a13
Adámek, Jiří; Reiterman, Jan. The category of uniform spaces as a completion of the category of metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 689-693. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a13/
[A] Adámek J.: Theory of Mathematical Structures. Reidel Publ. Comp., Dordrecht, 1983. | MR
[AHS] Adámek J., Herrlich H., Strecker G.E.: Least and largest initial completion. Comment. Math. Univ. Carolinae 20 (1979), 43-75. | MR
[C] Čech E.: Topological Spaces. Academia Prague, 1966. | MR
[E] Ehersmann A.E.: Partial completions of concrete functors. Cahiers Topo. Géom. Diff. 22 (1981), 315-328. | MR
[H] Herrlich H.: Initial completions. Math. Z. 150 (1976), 101-110. | MR | Zbl
[PRRS] Pelant J., Reiterman J., Rödl V., Simon P.: Ultrafilters on $ømega $ and atoms in the lattice of uniformities I. Topology and Appl. 30 (1988), 1-17. | MR