Oscillation properties for parabolic equations of neutral type
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 581-588
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The oscillation of the solutions of linear parabolic differential equations with deviating arguments are studied and sufficient conditions that all solutions of boundary value problems are oscillatory in a cylindrical domain are given.
The oscillation of the solutions of linear parabolic differential equations with deviating arguments are studied and sufficient conditions that all solutions of boundary value problems are oscillatory in a cylindrical domain are given.
Classification :
35B05, 35K10, 35K20, 35R10
Keywords: partial differential equation; deviating argument; boundary problem; oscillation
Keywords: partial differential equation; deviating argument; boundary problem; oscillation
@article{CMUC_1992_33_4_a1,
author = {Cui, Bao Tong},
title = {Oscillation properties for parabolic equations of neutral type},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {581--588},
year = {1992},
volume = {33},
number = {4},
mrnumber = {1240178},
zbl = {0796.35166},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a1/}
}
Cui, Bao Tong. Oscillation properties for parabolic equations of neutral type. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 4, pp. 581-588. http://geodesic.mathdoc.fr/item/CMUC_1992_33_4_a1/
[1] Mishev D.P., Bainov D.D.: Oscillation of the solutions of parabolic differential equations of neutral type. Appl. Math. Comput. 28 (1988), 97-111. | MR | Zbl
[2] Mishev D.P., Bainov D.D.: Oscillation properties of the solutions of a class of hyperbolic equations of neutral type. Funkc. Ekvac. 29 (1986), 213-218. | MR | Zbl
[3] Yoshida N.: Forced oscillations of solutions of parabolic equations. Bull. Austral. Math. Soc. 36 (1987), 289-294. | MR | Zbl
[4] Georgiou D., Kreith K.: Functional characteristic initial value problems. J. Math. Anal. Appl. 107 (1985), 414-424. | MR | Zbl
[5] Cui Baotong: Oscillation theorems of nonlinear parabolic equations of neutral type. Math. J. Toyama Univ. 14 (1991), 113-123. | MR | Zbl