Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 451-463 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(X,\rho)$, $(Y,\sigma)$ be metric spaces and $f:X\to Y$ an injective mapping. We put $\|f\|_{Lip} = \sup \{\sigma (f(x),f(y))/\rho(x,y)$; $x,y\in X$, $x\neq y\}$, and $\operatorname{dist}(f)= \|f\|_{Lip}.\|f^{-1}\|_{Lip}$ (the {\sl distortion\/} of the mapping $f$). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let $X$ be a finite metric space, and let $\varepsilon>0$, $K$ be given numbers. Then there exists a finite metric space $Y$, such that for every mapping $f:Y\to Z$ ($Z$ arbitrary metric space) with $\operatorname{dist}(f)
Let $(X,\rho)$, $(Y,\sigma)$ be metric spaces and $f:X\to Y$ an injective mapping. We put $\|f\|_{Lip} = \sup \{\sigma (f(x),f(y))/\rho(x,y)$; $x,y\in X$, $x\neq y\}$, and $\operatorname{dist}(f)= \|f\|_{Lip}.\|f^{-1}\|_{Lip}$ (the {\sl distortion\/} of the mapping $f$). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let $X$ be a finite metric space, and let $\varepsilon>0$, $K$ be given numbers. Then there exists a finite metric space $Y$, such that for every mapping $f:Y\to Z$ ($Z$ arbitrary metric space) with $\operatorname{dist}(f)$ one can find a mapping $g:X\to Y$, such that both the mappings $g$ and $f|_{g(X)}$ have distortion at most $(1+\varepsilon)$. If $X$ is isometrically embeddable into a $\ell_p$ space (for some $p\in [1,\infty]$), then also $Y$ can be chosen with this property.
Classification : 05C55, 05D10, 54C25, 54E35
Keywords: Ramsey theory; embedding of metric spaces; distortion; Lipschitz mapping; differentiability of Lipschitz mappings
@article{CMUC_1992_33_3_a7,
     author = {Matou\v{s}ek, Ji\v{r}{\'\i}},
     title = {Ramsey-like properties for {bi-Lipschitz} mappings of finite metric spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {451--463},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209287},
     zbl = {0769.05093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a7/}
}
TY  - JOUR
AU  - Matoušek, Jiří
TI  - Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 451
EP  - 463
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a7/
LA  - en
ID  - CMUC_1992_33_3_a7
ER  - 
%0 Journal Article
%A Matoušek, Jiří
%T Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 451-463
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a7/
%G en
%F CMUC_1992_33_3_a7
Matoušek, Jiří. Ramsey-like properties for bi-Lipschitz mappings of finite metric spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 451-463. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a7/

[AM83] Alon N., Milman J.: Embeddings of $l^k_{\infty}$ in finite dimensional Banach spaces. Israel J. Math. 45 (1983), 265-280. | MR

[Ar76] Aronszajn N.: Differentiability of Lipschitz mappings between Fréchet spaces. Studia Math. 57 (1976), 147-190. | MR

[BDK66] Bretagnolle J., Dacunha-Castelle D., Krivine J.L.: Lois stables et espaces $L^p$. Ann. Inst. H. Poincaré, Sect. B 2(1966) pp. 231-259. | MR

[Ben85] Benyamini Y.: The uniform classification of Banach spaces. Longhorn Notes, The Univ. of Texas at Austin, Functional analysis seminar 1984-85, pp. 15-38. | MR | Zbl

[BFM86] Bourgain J., Figiel T., Milman V.: On Hilbertian subspaces of finite metric spaces. Israel J. Math. 55 (1986), 147-152. | MR

[BMW86] Bourgain J., Milman V., Wolfson H.: On type of metric spaces. Trans. Am. Math. Soc. 294 (1986), 295-317. | MR | Zbl

[DU77] Diestel J., Uhl J.J., Jr.: Vector measures. Math. Surveys 15, AMS, Providence, 1977. | MR | Zbl

[Enf69a] Enflo P.: On a problem of Smirnov. Ark. Mat. 8 (1969), 107-109. | MR

[Enf69b] Enflo P.: On the nonexistence of uniform homeomorphisms between $L_p$-spaces. Ark. Mat. 8 (1969), 103-105. | MR

[Enf70] Enflo P.: Uniform structures and square roots in topological groups II. Israel J. Math. 8 (1970), 253-272. | MR | Zbl

[Fi88] Fichet B.: $L_p$ spaces in data analysis. in: Classification and related methods of data analysis, H.H. Bock ed., North Holland, 1988, pp. 439-444.

[GRS80] Graham R.L., Rothschild B.L., Spencer J.H.: Ramsey theory. J.Wiley & sons, 1980. | MR | Zbl

[JS82] Johnson W., Schechtman G.: Embedding $l_p^m$ into $l_1^n$. Acta Math. 149 (1982), 71-85. | MR

[Kir88] Kirchheim B.: Geometry of measures (in Czech). thesis, Charles University, Prague, 1988. | MR

[Lin66] Lindenstrauss J.: On nonlinear projections in Banach spaces. Michigan Math. J. 11 (1966), 268-287. | MR

[LT73] Lindenstrauss J., Tzafriri L.: Classical Banach spaces. Lecture Notes in Mathematics 338, Springer-Verlag, 1973. | MR | Zbl

[Ma89] Matoušek J.: Lipschitz distance of metric spaces (in Czech). CSc. degree thesis, Charles University, 1989.

[MiS86] Milman V.D., Schechtman G.: Asymptotic theory of finite dimensional normed spaces. Lecture Notes in Mathematics 1200, Springer-Verlag, 1986. | MR | Zbl

[Neš91] Nešetřil J.: Ramsey Theory. Chapter for Handbook of Combinatorics, North-Holland, to appear. | MR

[NR79] Nešetřil J., Rödl V.: Partition theory and its applications. in: Surveys in Combinatorics, (B. Bollobás ed.), Cambridge Univ. Press, Cambridge-London, 1979 pages 96-156. | MR

[Pre88] Preiss D.: Differentiability of Lipschitz functions on Banach spaces. Journal of Functional Analysis 91 (1990), 312-345. | MR | Zbl

[Sche81] Schechtman G.: Random embeddings of Euclidean spaces in sequence spaces. Israel J. Math. 40 (1981), 187-192. | MR | Zbl