Evolution inclusions of the subdifferential type depending on a parameter
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 437-449 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study evolution inclusions generated by time dependent convex subdifferentials, with the orientor field $F$ depending on a parameter. Under reasonable hypotheses on the data, we show that the solution set $S(\lambda )$ is both Vietoris and Hausdorff metric continuous in $\lambda \in \Lambda $. Using these results, we study the variational stability of a class of nonlinear parabolic optimal control problems.
In this paper we study evolution inclusions generated by time dependent convex subdifferentials, with the orientor field $F$ depending on a parameter. Under reasonable hypotheses on the data, we show that the solution set $S(\lambda )$ is both Vietoris and Hausdorff metric continuous in $\lambda \in \Lambda $. Using these results, we study the variational stability of a class of nonlinear parabolic optimal control problems.
Classification : 34A60, 34G20, 49A20, 49J15, 49J24
Keywords: subdifferential; compact type; Vietoris topology; Hausdorff metric; parabolic optimal control problem
@article{CMUC_1992_33_3_a6,
     author = {Kandilakis, Dimitrios and Papageorgiou, Nikolaos S.},
     title = {Evolution inclusions of the subdifferential type depending on a parameter},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {437--449},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209286},
     zbl = {0783.34048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a6/}
}
TY  - JOUR
AU  - Kandilakis, Dimitrios
AU  - Papageorgiou, Nikolaos S.
TI  - Evolution inclusions of the subdifferential type depending on a parameter
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 437
EP  - 449
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a6/
LA  - en
ID  - CMUC_1992_33_3_a6
ER  - 
%0 Journal Article
%A Kandilakis, Dimitrios
%A Papageorgiou, Nikolaos S.
%T Evolution inclusions of the subdifferential type depending on a parameter
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 437-449
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a6/
%G en
%F CMUC_1992_33_3_a6
Kandilakis, Dimitrios; Papageorgiou, Nikolaos S. Evolution inclusions of the subdifferential type depending on a parameter. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 437-449. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a6/

[1] Aubin J.-P., Cellina A.: Differential Inclusions. Springer, Berlin, 1983. | MR | Zbl

[2] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leiden, The Netherlands, 1976. | MR | Zbl

[3] Brezis H.: Operateurs Maximaux Monotones. North Holland, Amsterdam, 1973. | Zbl

[4] DeBlasi F., Myjak J.: On continuous approximations for multifunctions. Pacific J. Math. 123 (1986), 9-31. | MR

[5] Hiai F., Umgaki H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multiv. Anal. 7 (1977), 149-182. | MR

[6] Klein E., Thompson A.: Theory of Correspondences. Wiley, New York, 1984. | MR | Zbl

[7] Lim T.-C.: On fixed point stability for set-valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436-441. | MR | Zbl

[8] Nadler S.B.: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475-488. | MR

[9] Papageorgiou N.S.: A stability result for differential m inclusions in Banach spaces. J. Math. Anal. Appl. 118 (1986), 232-246. | MR

[10] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions. International J. Math. and Math. Sci. 10 (1987), 433-442. | MR | Zbl

[11] Papageorgiou N.S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 34 (1989), 287-296.

[12] Papageorgiou N.S.: Infinite dimensional control systems with state and control constraints. Proceedings of the Indian Academy of Sciences 100 (1990), 65-77. | MR | Zbl

[13] Papageorgiou N.S.: On evolution inclusions associated with time dependent convex subdifferentials. Comment. Math. Univ. Carolinae 31 (1990), 517-527. | MR | Zbl

[14] Przyluski K.M.: Remarks on continuous dependence of an optimal control on parameters. in: Game Theory and Mathematical Economics, eds. O. Moeschlin and D. Pallashke, North Holland, Amsterdam, 1981, pp. 331-327. | Zbl

[15] Rybinski L.: A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions. J. Math. Anal. Appl. 160 (1991), 24-46. | MR | Zbl

[16] Stassinopoulos G., Vinter R.: Continuous dependence of a differential inclusion on the right-hand side with applications to stability of optimal control problems. SIAM J. Control and Optim. 17 (1979), 432-449. | MR

[17] Tolstonogov A.: On the dependence on parameter of a solution of a differential inclusion with nonconvex second member. Diff. Equations 18 (1982), 1105-1113. | MR

[18] Tsukada M.: Convergence of best approximations in smooth Banach spaces. J. Approx. Theory 40 (1984), 301-309. | MR

[19] Vasilev A.: Continuous dependence of the solutions of differential inclusions on the parameter. Ukrainian Math. J. 35 (1983), 520-524. | MR

[20] Wagner D.: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859-903. | MR | Zbl

[21] Watanabe J.: On certain nonlinear evolution equations. J. Math. Soc. Japan 25 (1973), 446-463. | MR | Zbl

[22] Yamada Y.: On evolution inclusions generated by subdifferential operators. J. Fac. Sci. Univ. Tokyo 23 (1976), 491-515. | MR

[23] Yotsutani S.: Evolution equations associated with the subdifferentials. J. Math. Soc. Japan 31 (1978), 623-646. | MR | Zbl