Existence via partial regularity for degenerate systems of variational inequalities with natural growth
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 427-435
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove the existence of a partially regular solution for a system of degenerate variational inequalities with natural growth.
We prove the existence of a partially regular solution for a system of degenerate variational inequalities with natural growth.
Classification :
35J85, 49J40, 49N60
Keywords: variational inequalities; existence; regularity theory
Keywords: variational inequalities; existence; regularity theory
@article{CMUC_1992_33_3_a5,
author = {Fuchs, Martin},
title = {Existence via partial regularity for degenerate systems of variational inequalities with natural growth},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {427--435},
year = {1992},
volume = {33},
number = {3},
mrnumber = {1209285},
zbl = {0774.49008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a5/}
}
TY - JOUR AU - Fuchs, Martin TI - Existence via partial regularity for degenerate systems of variational inequalities with natural growth JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 427 EP - 435 VL - 33 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a5/ LA - en ID - CMUC_1992_33_3_a5 ER -
%0 Journal Article %A Fuchs, Martin %T Existence via partial regularity for degenerate systems of variational inequalities with natural growth %J Commentationes Mathematicae Universitatis Carolinae %D 1992 %P 427-435 %V 33 %N 3 %U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a5/ %G en %F CMUC_1992_33_3_a5
Fuchs, Martin. Existence via partial regularity for degenerate systems of variational inequalities with natural growth. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 427-435. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a5/
[1] Fuchs M.: $p$-harmonic obstacle problems. Part I: Partial regularity theory. Annali Mat. Pura Applicata 156 (1990), 127-158. | MR
[2] Fuchs M.: $p$-harmonic obstacle problems. Part III: Boundary regularity. Annali Mat. Pura Applicata 156 (1990), 159-180. | MR
[3] Fuchs M.: Smoothness for systems of degenerate variational inequalities with natural growth. Comment. Math. Univ. Carolinae 33 (1992), 33-41. | MR | Zbl
[4] Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. Springer Verlag, 1977. | MR | Zbl
[5] Hildebrandt S., Widman K.-O.: Variational inequalities for vector-valued functions. J. Reine Angew. Math. 309 (1979), 181-220. | MR