Quadratic functionals with a variable singular end point
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 411-425 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce the definition of coupled point with respect to a (scalar) quadratic functional on a noncompact interval. In terms of coupled points we prove necessary (and sufficient) conditions for the nonnegativity of these functionals.
In this paper we introduce the definition of coupled point with respect to a (scalar) quadratic functional on a noncompact interval. In terms of coupled points we prove necessary (and sufficient) conditions for the nonnegativity of these functionals.
Classification : 34A10, 34A12, 34C10, 49B10, 49K05, 49K15
Keywords: quadratic functional; singular quadratic functional; Euler-Lagrange equation; conjugate point; coupled point; singularity condition
@article{CMUC_1992_33_3_a4,
     author = {Do\v{s}l\'a, Zuzana and Zezza, PierLuigi},
     title = {Quadratic functionals with a variable singular end point},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {411--425},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209284},
     zbl = {0779.49026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a4/}
}
TY  - JOUR
AU  - Došlá, Zuzana
AU  - Zezza, PierLuigi
TI  - Quadratic functionals with a variable singular end point
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 411
EP  - 425
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a4/
LA  - en
ID  - CMUC_1992_33_3_a4
ER  - 
%0 Journal Article
%A Došlá, Zuzana
%A Zezza, PierLuigi
%T Quadratic functionals with a variable singular end point
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 411-425
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a4/
%G en
%F CMUC_1992_33_3_a4
Došlá, Zuzana; Zezza, PierLuigi. Quadratic functionals with a variable singular end point. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 411-425. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a4/

[1] Morse M., Leighton W.: Singular quadratic functionals. Trans. Amer. Math. Soc. 40 (1936), 252-286. | MR | Zbl

[2] Leighton W.: Principal quadratic functionals. Trans. Amer. Math. Soc. 67 (1949), 253-274. | MR | Zbl

[3] Leighton W., Martin A.D.: Quadratic functionals with a singular end point. Trans. Amer. Math. Soc. 78 (1955), 98-128. | MR | Zbl

[4] Reid W.T.: Sturmian theory for ordinary differential equations. Springer-Verlag 1980. | MR | Zbl

[5] Zeidan V., Zezza P.: Coupled points in the calculus of variations and applications to periodic problems. Trans. Amer. Math. Soc. 315 (1989), 323-335. | MR | Zbl

[6] Zeidan V., Zezza P.: Variable end points in the calculus of variations: Coupled points. in ``Analysis and Optimization of Systems'', A. Bensoussan, J.L. Lions eds., Lectures Notes in Control and Information Sci. 111, Springer-Verlag, Heidelberg, 1988. | MR

[7] Zezza P.: The Jacobi condition for elliptic forms in Hilbert spaces. JOTA 76 (1993). | MR

[8] Zezza P., Došlá Z.: Coupled points in the calculus of variations and optimal control theory via the quadratic form theory. preprint.

[9] Coppel W.A.: Disconjugacy. Lecture Notes in Math. 220, Springer-Verlag, Berlin-Heidelberg, 1971. | MR | Zbl