Keywords: quadratic functional; singular quadratic functional; Euler-Lagrange equation; conjugate point; coupled point; singularity condition
@article{CMUC_1992_33_3_a4,
author = {Do\v{s}l\'a, Zuzana and Zezza, PierLuigi},
title = {Quadratic functionals with a variable singular end point},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {411--425},
year = {1992},
volume = {33},
number = {3},
mrnumber = {1209284},
zbl = {0779.49026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a4/}
}
TY - JOUR AU - Došlá, Zuzana AU - Zezza, PierLuigi TI - Quadratic functionals with a variable singular end point JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 411 EP - 425 VL - 33 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a4/ LA - en ID - CMUC_1992_33_3_a4 ER -
Došlá, Zuzana; Zezza, PierLuigi. Quadratic functionals with a variable singular end point. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 411-425. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a4/
[1] Morse M., Leighton W.: Singular quadratic functionals. Trans. Amer. Math. Soc. 40 (1936), 252-286. | MR | Zbl
[2] Leighton W.: Principal quadratic functionals. Trans. Amer. Math. Soc. 67 (1949), 253-274. | MR | Zbl
[3] Leighton W., Martin A.D.: Quadratic functionals with a singular end point. Trans. Amer. Math. Soc. 78 (1955), 98-128. | MR | Zbl
[4] Reid W.T.: Sturmian theory for ordinary differential equations. Springer-Verlag 1980. | MR | Zbl
[5] Zeidan V., Zezza P.: Coupled points in the calculus of variations and applications to periodic problems. Trans. Amer. Math. Soc. 315 (1989), 323-335. | MR | Zbl
[6] Zeidan V., Zezza P.: Variable end points in the calculus of variations: Coupled points. in ``Analysis and Optimization of Systems'', A. Bensoussan, J.L. Lions eds., Lectures Notes in Control and Information Sci. 111, Springer-Verlag, Heidelberg, 1988. | MR
[7] Zezza P.: The Jacobi condition for elliptic forms in Hilbert spaces. JOTA 76 (1993). | MR
[8] Zezza P., Došlá Z.: Coupled points in the calculus of variations and optimal control theory via the quadratic form theory. preprint.
[9] Coppel W.A.: Disconjugacy. Lecture Notes in Math. 220, Springer-Verlag, Berlin-Heidelberg, 1971. | MR | Zbl