Non-compact perturbations of $m$-accretive operators in general Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 403-409 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with the Cauchy problem for differential inclusions governed by $m$-accretive operators in general Banach spaces. We are interested in finding the sufficient conditions for the existence of integral solutions of the problem $x'(t)\in -A x(t)+f(t,x(t))$, $x(0)=x_0$, where $A$ is an $m$-accretive operator, and $f$ is a continuous, but non-compact perturbation, satisfying some additional conditions.
In this paper we deal with the Cauchy problem for differential inclusions governed by $m$-accretive operators in general Banach spaces. We are interested in finding the sufficient conditions for the existence of integral solutions of the problem $x'(t)\in -A x(t)+f(t,x(t))$, $x(0)=x_0$, where $A$ is an $m$-accretive operator, and $f$ is a continuous, but non-compact perturbation, satisfying some additional conditions.
Classification : 34A60, 34G20, 47H06, 47H09, 47H20, 47N20, 58D25
Keywords: $m$-accretive operators; measures of noncompactness; differential inclusions; semigroups of contractions
@article{CMUC_1992_33_3_a3,
     author = {Cicho\'n, Mieczys{\l}aw},
     title = {Non-compact perturbations of $m$-accretive operators in general {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {403--409},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209283},
     zbl = {0770.58003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a3/}
}
TY  - JOUR
AU  - Cichoń, Mieczysław
TI  - Non-compact perturbations of $m$-accretive operators in general Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 403
EP  - 409
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a3/
LA  - en
ID  - CMUC_1992_33_3_a3
ER  - 
%0 Journal Article
%A Cichoń, Mieczysław
%T Non-compact perturbations of $m$-accretive operators in general Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 403-409
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a3/
%G en
%F CMUC_1992_33_3_a3
Cichoń, Mieczysław. Non-compact perturbations of $m$-accretive operators in general Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 403-409. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a3/

[1] Banaś J., Goebel K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Math. 60, Marcel Dekker, New York-Basel, 1980. | MR

[2] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976. | MR | Zbl

[3] Cellina A., Marchi V.: Non-convex perturbations of maximal monotone differential inclusions. Israel J. Math. 46 (1983), 1-11. | MR | Zbl

[4] Cichoń M.: Multivalued perturbations of $m$-accretive differential inclusions in non-separable Banach spaces. Commentationes Math. 32, to appear. | MR

[5] Colombo G., Fonda A., Ornelas A.: Lower semicontinuous perturbations of maximal monotone differential inclusions. Israel J. Math. 61 (1988), 211-218. | MR | Zbl

[6] Daneš J.: Generalized concentrative mappings and their fixed points. Comment. Math. Univ. Carolinae 11 (1970), 115-136. | MR

[7] Goncharov V.V., Tolstonogov A.A.: Mutual continuous selections of multifunctions with non-convex values and its applications. Math. Sb. 182 (1991), 946-969. | MR

[8] Gutman S.: Evolutions governed by $m$-accretive plus compact operators. Nonlinear Anal. Th. Math. Appl. 7 (1983), 707-717. | MR | Zbl

[9] Gutman S.: Existence theorems for nonlinear evolution equations. ibid. 11 (1987), 1193-1206. | MR | Zbl

[10] Martin R.H., Jr.: Nonlinear Operators and Differential Equations in Banach Spaces. John Wiley, New York-London-Sydney-Toronto, 1976. | MR | Zbl

[11] Mitidieri E., Vrabie I.I.: Differential inclusions governed by non convex perturbations of $m$-accretive operators. Differential Integral Equations 2 (1989), 525-531. | MR | Zbl

[12] Schechter E.: Evolution generated by semilinear dissipative plus compact operators. Trans. Amer. Math. Soc. 275 (1983), 297-308. | MR | Zbl

[13] Vrabie I.I.: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics 32, Longman, Boston-London-Melbourne, 1987. | MR | Zbl