Strong sequences, binary families and Esenin-Volpin's theorem
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 563-569 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

One of the most important and well known theorem in the class of dyadic spaces is Esenin-Volpin's theorem of weight of dyadic spaces. The aim of this paper is to prove Esenin-Volpin's theorem in general form in class of thick spaces which possesses special subbases.
One of the most important and well known theorem in the class of dyadic spaces is Esenin-Volpin's theorem of weight of dyadic spaces. The aim of this paper is to prove Esenin-Volpin's theorem in general form in class of thick spaces which possesses special subbases.
Classification : 05A99, 54D30
Keywords: strong sequence; binary family; dyadic space; thick space
@article{CMUC_1992_33_3_a18,
     author = {Turza\'nski, Marian},
     title = {Strong sequences, binary families and {Esenin-Volpin's} theorem},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {563--569},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209298},
     zbl = {0796.54031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a18/}
}
TY  - JOUR
AU  - Turzański, Marian
TI  - Strong sequences, binary families and Esenin-Volpin's theorem
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 563
EP  - 569
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a18/
LA  - en
ID  - CMUC_1992_33_3_a18
ER  - 
%0 Journal Article
%A Turzański, Marian
%T Strong sequences, binary families and Esenin-Volpin's theorem
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 563-569
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a18/
%G en
%F CMUC_1992_33_3_a18
Turzański, Marian. Strong sequences, binary families and Esenin-Volpin's theorem. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 563-569. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a18/

[1] Arhangelskii A.V.: Aproximatsia teorii diadicheskih bikompaktov (in Russian). DAN 184 (1969), 767-770. | MR

[2] Bell M.G.: Generalized dyadic spaces. Fundamenta Mathematicae CXXV (1985), 47-58. | MR | Zbl

[3] Efimov B.A.: Diadicheskie bikompakty (in Russian). Trudy Mosk. Matem. O-va 14 (1965), 211-247. | MR

[4] DeGroot J.: Supercompactness and Superextensions. Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin, 1969, pp.89-90.

[5] Kulpa W., Turzaṅski M.: Bijections into compact spaces. Acta Universitatis Carolinae - Mathematica and Physica 29 (1988), 43-49. | MR

[6] Mrȯwka S.: Mazur theorem and $m$-acid spaces. Bull. Acad. Polon. Sci. 43 (1970), 299-305. | MR

[7] Szymaṅski A., Turzaṅski M.: Subbase characterization of special spaces. Colloquium Mathematicum XLVII (1982), 185-197. | MR

[8] Turzaṅski M.: On generalizations of dyadic spaces. Acta Universitatis Carolinae - Mathematica et Physica 30 (1989), 153-159. | MR

[9] Turzaṅski M.: Strong sequences and the weight of regular spaces. Comment. Math. Univ. Carolinae 33 (1992), 557-561. | MR