Strong sequences and the weight of regular spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 557-561
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It will be shown that if in a family of sets there exists a strong sequence of the length $(\kappa ^{\lambda })^+$ then this family contains a subfamily consisting of $\lambda ^+$ pairwise disjoint sets. The method of strong sequences will be used for estimating the weight of regular spaces.
It will be shown that if in a family of sets there exists a strong sequence of the length $(\kappa ^{\lambda })^+$ then this family contains a subfamily consisting of $\lambda ^+$ pairwise disjoint sets. The method of strong sequences will be used for estimating the weight of regular spaces.
Classification :
05A99, 54A25, 54D10
Keywords: strong sequence; Cantor discontinuum; dyadic space; cellularity and weight of space
Keywords: strong sequence; Cantor discontinuum; dyadic space; cellularity and weight of space
@article{CMUC_1992_33_3_a17,
author = {Turza\'nski, Marian},
title = {Strong sequences and the weight of regular spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {557--561},
year = {1992},
volume = {33},
number = {3},
mrnumber = {1209297},
zbl = {0793.54016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a17/}
}
Turzański, Marian. Strong sequences and the weight of regular spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 557-561. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a17/
[1] Efimov B.A.: Diaditcheskie bikompakty (in Russian). Trudy Mosk. Matem. O-va 14 (1965), 211-247. | MR
[2] Efimov B.A.: Ob ekstremal'no nesvjaznych bikompaktach $\pi $-vesa kontinuum (in Russian). DAN 183 , no. 3 (1968), 15-18. | MR
[3] Efimov B.A.: Ekstremal'no nesvjaznye bikompakty (in Russian). Trudy Mosk. Matem. O-va 23 (1970), 235-276. | MR
[4] Hodel R.: Cardinal Functions I. Handbook of Set-Theoretic Topology, North-Holland, 1984. | MR | Zbl