@article{CMUC_1992_33_3_a16,
author = {Tkachuk, Vladimir V.},
title = {A note on splittable spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {551--555},
year = {1992},
volume = {33},
number = {3},
mrnumber = {1209296},
zbl = {0769.54004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a16/}
}
Tkachuk, Vladimir V. A note on splittable spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 551-555. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a16/
[1] Arhangel'skii A.V.: A general concept of splittability of a topological space (in Russian). in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 8-10.
[2] Arhangel'skii A.V., Shakhmatov D.B.: Splittable spaces and questions of functions approximations (in Russian). in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 10-11.
[3] Arhangel'skii A.V., Shakhmatov D.B.: On pointwise approximation of arbitrary functions by countable families of continuous functions (in Russian). Trudy Seminara I.G. Petrovskogo 13 (1988), 206-227. | MR
[4] Tkachuk V.V.: Approximation of $\bold R^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p(X)$. Comment. Math. Univ. Carolinae 27 (1986), 267-276. | MR
[5] Bregman Yu.H., Šapirovskii B.E., Šostak A.P.: On partition of topological spaces. Časopis pro pěstování mat. 109 (1984), 27-53. | MR
[6] Mazurkiewicz S.: Sur les problèmes $\kappa $ et $\lambda $ de Urysohn. Fund. Math. 10 (1927), 311-319.
[7] Tkachuk V.: Remainders over discrete spaces - some applications (in Russian). Vestnik MGU, Mat., Mech., no. 4, 1990, 18-21. | MR
[8] Malyhin V.I.: $\beta N$ is prime. Bull. Acad. Polon. Sci., Ser. Mat. 27 (1979), 295-297. | MR | Zbl
[9] Engelking R.: General Topology. PWN, Warszawa, 1977. | MR | Zbl
[10] Skljarenko E.G.: A theorem on maps, lowering dimension (in Russian). Bull. Acad. Polon. Sci., Ser. Mat. 10 (1962), 429-432. | MR