A note on splittable spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 551-555 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A space $X$ is splittable over a space $Y$ (or splits over $Y$) if for every $A\subset X$ there exists a continuous map $f:X\rightarrow Y$ with $f^{-1} f A=A$. We prove that any $n$-dimensional polyhedron splits over $\bold R^{2n}$ but not necessarily over $\bold R^{2n-2}$. It is established that if a metrizable compact $X$ splits over $\bold R^n$, then $\dim X\leq n$. An example of $n$-dimensional compact space which does not split over $\bold R^{2n}$ is given.
A space $X$ is splittable over a space $Y$ (or splits over $Y$) if for every $A\subset X$ there exists a continuous map $f:X\rightarrow Y$ with $f^{-1} f A=A$. We prove that any $n$-dimensional polyhedron splits over $\bold R^{2n}$ but not necessarily over $\bold R^{2n-2}$. It is established that if a metrizable compact $X$ splits over $\bold R^n$, then $\dim X\leq n$. An example of $n$-dimensional compact space which does not split over $\bold R^{2n}$ is given.
Classification : 54A25, 54D99
Keywords: splittable; polyhedron; dimension
@article{CMUC_1992_33_3_a16,
     author = {Tkachuk, Vladimir V.},
     title = {A note on splittable spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {551--555},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209296},
     zbl = {0769.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a16/}
}
TY  - JOUR
AU  - Tkachuk, Vladimir V.
TI  - A note on splittable spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 551
EP  - 555
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a16/
LA  - en
ID  - CMUC_1992_33_3_a16
ER  - 
%0 Journal Article
%A Tkachuk, Vladimir V.
%T A note on splittable spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 551-555
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a16/
%G en
%F CMUC_1992_33_3_a16
Tkachuk, Vladimir V. A note on splittable spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 551-555. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a16/

[1] Arhangel'skii A.V.: A general concept of splittability of a topological space (in Russian). in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 8-10.

[2] Arhangel'skii A.V., Shakhmatov D.B.: Splittable spaces and questions of functions approximations (in Russian). in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 10-11.

[3] Arhangel'skii A.V., Shakhmatov D.B.: On pointwise approximation of arbitrary functions by countable families of continuous functions (in Russian). Trudy Seminara I.G. Petrovskogo 13 (1988), 206-227. | MR

[4] Tkachuk V.V.: Approximation of $\bold R^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p(X)$. Comment. Math. Univ. Carolinae 27 (1986), 267-276. | MR

[5] Bregman Yu.H., Šapirovskii B.E., Šostak A.P.: On partition of topological spaces. Časopis pro pěstování mat. 109 (1984), 27-53. | MR

[6] Mazurkiewicz S.: Sur les problèmes $\kappa $ et $\lambda $ de Urysohn. Fund. Math. 10 (1927), 311-319.

[7] Tkachuk V.: Remainders over discrete spaces - some applications (in Russian). Vestnik MGU, Mat., Mech., no. 4, 1990, 18-21. | MR

[8] Malyhin V.I.: $\beta N$ is prime. Bull. Acad. Polon. Sci., Ser. Mat. 27 (1979), 295-297. | MR | Zbl

[9] Engelking R.: General Topology. PWN, Warszawa, 1977. | MR | Zbl

[10] Skljarenko E.G.: A theorem on maps, lowering dimension (in Russian). Bull. Acad. Polon. Sci., Ser. Mat. 10 (1962), 429-432. | MR