@article{CMUC_1992_33_3_a15,
author = {Plo\v{s}\v{c}ica, Miroslav},
title = {A duality for isotropic median algebras},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {541--550},
year = {1992},
volume = {33},
number = {3},
mrnumber = {1209295},
zbl = {0766.08006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a15/}
}
Ploščica, Miroslav. A duality for isotropic median algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 541-550. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a15/
[1] Bandelt H.J., Hedlíková J.: Median algebras. Discrete Math. 45 1-30 (1983). | MR
[2] Davey B.A., Werner H.: Dualities and equivalences for varieties of algebras. Coll. Math. Soc. János Bolyai 33 (Contributions to lattice theory), North-Holland, 1983,pp. 101-276. | MR | Zbl
[3] Draškovičová H.: Varieties of modular median algebras. Contributions to General Algebra 7 Holder-Pichler-Tempsky Wien (1991), 119-125. | MR
[4] Fried E., Pixley A.F.: The dual discriminator function in universal algebra. Acta Sci. Math. (Szeged) 41 (1979), 83-100. | MR | Zbl
[5] Isbell J.R.: Median algebra. Trans. Amer. Math. Soc. 260 (1980), 319-362. | MR | Zbl
[6] Werner H.: A duality for weakly associative lattices. Coll. Math. Soc. János Bolyai 28 (Finite algebra and multiple-valued logic), North-Holland, 1982, pp. 781-808. | MR | Zbl
[7] Werner H.: A duality for the lattice variety generated by $M_3$. Coll. Math. Soc. János Bolyai 43 (Lectures in universal algebra), North-Holland, 1986, pp. 561-572. | MR