A duality for isotropic median algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 541-550 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish categorical dualities between varieties of isotropic median algebras and suitable categories of operational and relational topological structures. We follow a general duality theory of B.A. Davey and H. Werner. The duality results are used to describe free isotropic median algebras. If the number of free generators is less than five, the description is detailed.
We establish categorical dualities between varieties of isotropic median algebras and suitable categories of operational and relational topological structures. We follow a general duality theory of B.A. Davey and H. Werner. The duality results are used to describe free isotropic median algebras. If the number of free generators is less than five, the description is detailed.
Classification : 06B99, 06C05, 06E15, 08B20, 18A40
Keywords: median algebra; duality
@article{CMUC_1992_33_3_a15,
     author = {Plo\v{s}\v{c}ica, Miroslav},
     title = {A duality for isotropic median algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {541--550},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209295},
     zbl = {0766.08006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a15/}
}
TY  - JOUR
AU  - Ploščica, Miroslav
TI  - A duality for isotropic median algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 541
EP  - 550
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a15/
LA  - en
ID  - CMUC_1992_33_3_a15
ER  - 
%0 Journal Article
%A Ploščica, Miroslav
%T A duality for isotropic median algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 541-550
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a15/
%G en
%F CMUC_1992_33_3_a15
Ploščica, Miroslav. A duality for isotropic median algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 541-550. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a15/

[1] Bandelt H.J., Hedlíková J.: Median algebras. Discrete Math. 45 1-30 (1983). | MR

[2] Davey B.A., Werner H.: Dualities and equivalences for varieties of algebras. Coll. Math. Soc. János Bolyai 33 (Contributions to lattice theory), North-Holland, 1983,pp. 101-276. | MR | Zbl

[3] Draškovičová H.: Varieties of modular median algebras. Contributions to General Algebra 7 Holder-Pichler-Tempsky Wien (1991), 119-125. | MR

[4] Fried E., Pixley A.F.: The dual discriminator function in universal algebra. Acta Sci. Math. (Szeged) 41 (1979), 83-100. | MR | Zbl

[5] Isbell J.R.: Median algebra. Trans. Amer. Math. Soc. 260 (1980), 319-362. | MR | Zbl

[6] Werner H.: A duality for weakly associative lattices. Coll. Math. Soc. János Bolyai 28 (Finite algebra and multiple-valued logic), North-Holland, 1982, pp. 781-808. | MR | Zbl

[7] Werner H.: A duality for the lattice variety generated by $M_3$. Coll. Math. Soc. János Bolyai 43 (Lectures in universal algebra), North-Holland, 1986, pp. 561-572. | MR