Lower semicontinuous functions with values in a continuous lattice
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 505-523 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is proved that for every continuous lattice there is a unique semiuniform structure generating both the order and the Lawson topology. The way below relation can be characterized with this uniform structure. These results are used to extend many of the analytical properties of real-valued l.s.c\. functions to l.s.c\. functions with values in a continuous lattice. The results of this paper have some applications in potential theory.
It is proved that for every continuous lattice there is a unique semiuniform structure generating both the order and the Lawson topology. The way below relation can be characterized with this uniform structure. These results are used to extend many of the analytical properties of real-valued l.s.c\. functions to l.s.c\. functions with values in a continuous lattice. The results of this paper have some applications in potential theory.
Classification : 06B30, 06B35, 31D05, 54C08, 54E15, 54F05
Keywords: continuous lattices; lower semicontinuous functions; potential theory
@article{CMUC_1992_33_3_a12,
     author = {van Gool, Frans},
     title = {Lower semicontinuous functions with values in a continuous lattice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {505--523},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209292},
     zbl = {0769.06005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a12/}
}
TY  - JOUR
AU  - van Gool, Frans
TI  - Lower semicontinuous functions with values in a continuous lattice
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 505
EP  - 523
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a12/
LA  - en
ID  - CMUC_1992_33_3_a12
ER  - 
%0 Journal Article
%A van Gool, Frans
%T Lower semicontinuous functions with values in a continuous lattice
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 505-523
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a12/
%G en
%F CMUC_1992_33_3_a12
van Gool, Frans. Lower semicontinuous functions with values in a continuous lattice. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 505-523. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a12/

[1] Bliedtner J., Hansen W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer-Verlag, Berlin, 1986. | MR | Zbl

[2] Borwein J.M., Théra M.: Sandwich Theorems for Semicontinuous Operators. preprint, 1990.

[3] Bourbaki N.: Topologie Générale, ch. IX. Hermann & Cie, Paris, 1948. | MR

[4] Constantinescu C., Cornea A.: Potential Theory on Harmonic Spaces. Springer-Verlag, Berlin, 1972. | MR | Zbl

[5] Fletcher P., Lindgren W.F.: Quasi-uniform spaces. Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker inc., New York, 1982. | MR | Zbl

[6] Gerritse G.: Lattice-valued Semicontinuous Functions. Report 8532, Catholic University of Nijmegen, 1985. | Zbl

[7] Gierz G., Hofmann K., Keimel K., Lawson J., Mislove M., Scott D.: A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980. | MR | Zbl

[8] van Gool F.A.: Non-linear Potential Theory. Preprint 606, University of Utrecht, 1990.

[9] Holwerda H.: Closed Hypographs, Semicontinuity and the Topological Closed-graph Theorem: A unifying Approach. Report 8935, Catholic University of Nijmegen, 1989.

[10] Katětov M.: On real-valued functions in topological spaces. Fundamenta Mathematicae 38 (1951), 85-91 Correction in Fund. Math. 40 (1953), 203-205. | MR

[11] Nachbin L.: Topology and Order. Van Nostrand, Princeton, 1965. | MR | Zbl

[12] Penot J.P., Théra M.: Semi-continuous mappings in general topology. Arch. Math. 38 (1982), 158-166.

[13] Tong H.: Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289-292. | MR | Zbl