Keywords: continuous lattices; lower semicontinuous functions; potential theory
@article{CMUC_1992_33_3_a12,
author = {van Gool, Frans},
title = {Lower semicontinuous functions with values in a continuous lattice},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {505--523},
year = {1992},
volume = {33},
number = {3},
mrnumber = {1209292},
zbl = {0769.06005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a12/}
}
van Gool, Frans. Lower semicontinuous functions with values in a continuous lattice. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 505-523. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a12/
[1] Bliedtner J., Hansen W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer-Verlag, Berlin, 1986. | MR | Zbl
[2] Borwein J.M., Théra M.: Sandwich Theorems for Semicontinuous Operators. preprint, 1990.
[3] Bourbaki N.: Topologie Générale, ch. IX. Hermann & Cie, Paris, 1948. | MR
[4] Constantinescu C., Cornea A.: Potential Theory on Harmonic Spaces. Springer-Verlag, Berlin, 1972. | MR | Zbl
[5] Fletcher P., Lindgren W.F.: Quasi-uniform spaces. Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker inc., New York, 1982. | MR | Zbl
[6] Gerritse G.: Lattice-valued Semicontinuous Functions. Report 8532, Catholic University of Nijmegen, 1985. | Zbl
[7] Gierz G., Hofmann K., Keimel K., Lawson J., Mislove M., Scott D.: A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980. | MR | Zbl
[8] van Gool F.A.: Non-linear Potential Theory. Preprint 606, University of Utrecht, 1990.
[9] Holwerda H.: Closed Hypographs, Semicontinuity and the Topological Closed-graph Theorem: A unifying Approach. Report 8935, Catholic University of Nijmegen, 1989.
[10] Katětov M.: On real-valued functions in topological spaces. Fundamenta Mathematicae 38 (1951), 85-91 Correction in Fund. Math. 40 (1953), 203-205. | MR
[11] Nachbin L.: Topology and Order. Van Nostrand, Princeton, 1965. | MR | Zbl
[12] Penot J.P., Théra M.: Semi-continuous mappings in general topology. Arch. Math. 38 (1982), 158-166.
[13] Tong H.: Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289-292. | MR | Zbl