A direct factor theorem for commutative group algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 383-387 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose $F$ is a field of characteristic $p\neq 0$ and $H$ is a $p$-primary abelian $A$-group. It is shown that $H$ is a direct factor of the group of units of the group algebra $F H$.
Suppose $F$ is a field of characteristic $p\neq 0$ and $H$ is a $p$-primary abelian $A$-group. It is shown that $H$ is a direct factor of the group of units of the group algebra $F H$.
Classification : 16S34, 16U60, 20C07, 20K10
Keywords: units of group algebras; $A$-groups
@article{CMUC_1992_33_3_a1,
     author = {Ullery, William},
     title = {A direct factor theorem for commutative group algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {383--387},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209281},
     zbl = {0794.16022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a1/}
}
TY  - JOUR
AU  - Ullery, William
TI  - A direct factor theorem for commutative group algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 383
EP  - 387
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a1/
LA  - en
ID  - CMUC_1992_33_3_a1
ER  - 
%0 Journal Article
%A Ullery, William
%T A direct factor theorem for commutative group algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 383-387
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a1/
%G en
%F CMUC_1992_33_3_a1
Ullery, William. A direct factor theorem for commutative group algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 383-387. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a1/

[F] Fuchs L.: Infinite Abelian Groups. Volumes I and II, Academic Press, New York, 1970 and 1973. | Zbl

[H1] Hill P.: The classification of $N$-groups. Houston J. Math. 10 (1984), 43-55. | MR | Zbl

[H2] Hill P.: On the structure of abelian $p$-groups. Trans. Amer. Math. Soc. 288 (1985), 505-525. | MR | Zbl

[HU] Hill P., Ullery W.: A note on a theorem of May concerning commutative group algebras. Proc. Amer. Math. Soc. 110 (1990), 59-63. | MR | Zbl

[M1] May W.: Modular group algebras of totally projective $p$-primary groups. Proc. Amer. Math. Soc. 76 (1979), 31-34. | MR | Zbl

[M2] May W.: Modular group algebras of simply presented abelian groups. Proc. Amer. Math. Soc. 104 (1988), 403-409. | MR | Zbl

[M] Mollov T.Zh.: Ulm invariants of Sylow $p$-subgroups of group algebras of abelian groups over fields of characteristic $p$. Pliska 2 (1981), 77-82. | MR

[U] Ullery W.: An isomorphism theorem for commutative modular group algebras. Proc. Amer. Math. Soc. 110 (1990), 287-292. | MR | Zbl

[W] Warfield R.: A classification theorem for abelian $p$-groups. Trans. Amer. Math. Soc. 210 (1975), 149-168. | MR | Zbl