Relative block semigroups and their arithmetical applications
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 373-381 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce relative block semigroups as an appropriate tool for the study of certain phenomena of non-unique factorizations in residue classes. Thereby the main interest lies in rings of integers of algebraic number fields, where certain asymptotic results are obtained.
We introduce relative block semigroups as an appropriate tool for the study of certain phenomena of non-unique factorizations in residue classes. Thereby the main interest lies in rings of integers of algebraic number fields, where certain asymptotic results are obtained.
Classification : 11R27, 11R47, 20M14
Keywords: factorization problems; Krull semigroups
@article{CMUC_1992_33_3_a0,
     author = {Halter-Koch, Franz},
     title = {Relative block semigroups and their arithmetical applications},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {373--381},
     year = {1992},
     volume = {33},
     number = {3},
     mrnumber = {1209280},
     zbl = {0769.11038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a0/}
}
TY  - JOUR
AU  - Halter-Koch, Franz
TI  - Relative block semigroups and their arithmetical applications
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 373
EP  - 381
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a0/
LA  - en
ID  - CMUC_1992_33_3_a0
ER  - 
%0 Journal Article
%A Halter-Koch, Franz
%T Relative block semigroups and their arithmetical applications
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 373-381
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a0/
%G en
%F CMUC_1992_33_3_a0
Halter-Koch, Franz. Relative block semigroups and their arithmetical applications. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 3, pp. 373-381. http://geodesic.mathdoc.fr/item/CMUC_1992_33_3_a0/

[1] Geroldinger A.: Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505-529. | MR | Zbl

[2] Geroldinger A., Halter-Koch F.: Non-unique factorizations in block semigroups and arithmetical applications. Math. Slov., to appear. | MR | Zbl

[3] Geroldinger A., Halter-Koch F.: Realization Theorems for Krull Semigroups. Semigroup Forum 44 (1992), 229-237. | MR

[4] Halter-Koch F.: Halbgruppen mit Divisorentheorie. Expo. Math. 8 (1990), 27-66. | MR | Zbl

[5] Halter-Koch F.: Ein Approximationssatz für Halbgruppen mit Divisorentheorie. Result. Math. 19 (1991), 74-82. | MR | Zbl

[6] Halter-Koch F., Müller W.: Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields. J. Reine Angew. Math. 421 (1991), 159-188. | MR

[7] Kaczorowski J.: Some remarks on factorization in algebraic number fields. Acta Arith. 43 (1983), 53-68. | MR | Zbl

[8] Narkiewicz N.: Finite abelian groups and factorization problems. Coll. Math. 42 (1979), 319-330. | MR | Zbl

[9] Narkiewicz N.: Number Theory. World Scientific, 1983. | Zbl

[10] Narkiewicz N.: Elementary and Analytic theory of algebraic numbers. Springer, 1990. | MR | Zbl