Strong Fubini axioms from measure extension axioms
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 291-297 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is shown that measure extension axioms imply various forms of the Fubini theorem for nonmeasurable sets and functions in Radon measure spaces.
It is shown that measure extension axioms imply various forms of the Fubini theorem for nonmeasurable sets and functions in Radon measure spaces.
Classification : 03E05, 03E35, 03E65, 28A35, 28C05, 28C15
Keywords: Fubini theorem; Product Measure Extension Axiom; Radon measure
@article{CMUC_1992_33_2_a8,
     author = {Zakrzewski, Piotr},
     title = {Strong {Fubini} axioms from measure extension axioms},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {291--297},
     year = {1992},
     volume = {33},
     number = {2},
     mrnumber = {1189659},
     zbl = {0765.03026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a8/}
}
TY  - JOUR
AU  - Zakrzewski, Piotr
TI  - Strong Fubini axioms from measure extension axioms
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 291
EP  - 297
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a8/
LA  - en
ID  - CMUC_1992_33_2_a8
ER  - 
%0 Journal Article
%A Zakrzewski, Piotr
%T Strong Fubini axioms from measure extension axioms
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 291-297
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a8/
%G en
%F CMUC_1992_33_2_a8
Zakrzewski, Piotr. Strong Fubini axioms from measure extension axioms. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 291-297. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a8/

[1] Carlson T.: Extending Lebesgue measure by infinitely many sets. Pac. J. Math. 115 (1984), 33-45. | MR | Zbl

[2] Fleissner W.G.: The normal Moore space conjecture. in: Handbook of set-theoretic topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, 1984. | MR | Zbl

[3] Freiling C.: Axioms of symmetry: throwing darts at the real number line. J. Symbolic Logic 51 (1986), 190-200. | MR | Zbl

[4] Fremlin D.H.: Measure algebras. in: Handbook of Boolean algebras, ed. by J.D. Monk, Elsevier Science Publishers B.V., 1989. | MR | Zbl

[5] Fremlin D.H.: Consequences of Martin's Axiom. Cambridge University Press, 1984. | Zbl

[6] Fremlin D.H.: Real-valued-measurable cardinals. to appear. | MR | Zbl

[7] Friedman H.: A consistent Fubini-Tonelli theorem for nonmeasurable functions. Illinois J. Math. 24 (1980), 390-395. | MR | Zbl

[8] Kamburelis A.: A new proof of the Gitik-Shelah theorem. Israel J. Math. 72 (1990), 373-380. | MR | Zbl

[9] Shipman J.: Cardinal conditions for strong Fubini theorems. Trans. Amer. Math. Soc. 321 (1990), 465-481. | MR | Zbl

[10] Zakrzewski P.: Strong Fubini theorems from measure extension axioms. an abstract of the talk given at the 15th Summer Symposium in Real Analysis, Real Analysis Exchange 17 (1991-92), 65-66.