Keywords: Fubini theorem; Product Measure Extension Axiom; Radon measure
@article{CMUC_1992_33_2_a8,
author = {Zakrzewski, Piotr},
title = {Strong {Fubini} axioms from measure extension axioms},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {291--297},
year = {1992},
volume = {33},
number = {2},
mrnumber = {1189659},
zbl = {0765.03026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a8/}
}
Zakrzewski, Piotr. Strong Fubini axioms from measure extension axioms. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 291-297. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a8/
[1] Carlson T.: Extending Lebesgue measure by infinitely many sets. Pac. J. Math. 115 (1984), 33-45. | MR | Zbl
[2] Fleissner W.G.: The normal Moore space conjecture. in: Handbook of set-theoretic topology, ed. by K. Kunen and J.E. Vaughan, North-Holland, 1984. | MR | Zbl
[3] Freiling C.: Axioms of symmetry: throwing darts at the real number line. J. Symbolic Logic 51 (1986), 190-200. | MR | Zbl
[4] Fremlin D.H.: Measure algebras. in: Handbook of Boolean algebras, ed. by J.D. Monk, Elsevier Science Publishers B.V., 1989. | MR | Zbl
[5] Fremlin D.H.: Consequences of Martin's Axiom. Cambridge University Press, 1984. | Zbl
[6] Fremlin D.H.: Real-valued-measurable cardinals. to appear. | MR | Zbl
[7] Friedman H.: A consistent Fubini-Tonelli theorem for nonmeasurable functions. Illinois J. Math. 24 (1980), 390-395. | MR | Zbl
[8] Kamburelis A.: A new proof of the Gitik-Shelah theorem. Israel J. Math. 72 (1990), 373-380. | MR | Zbl
[9] Shipman J.: Cardinal conditions for strong Fubini theorems. Trans. Amer. Math. Soc. 321 (1990), 465-481. | MR | Zbl
[10] Zakrzewski P.: Strong Fubini theorems from measure extension axioms. an abstract of the talk given at the 15th Summer Symposium in Real Analysis, Real Analysis Exchange 17 (1991-92), 65-66.