Keywords: self-similar processes; convergence in distribution
@article{CMUC_1992_33_2_a7,
author = {Lachout, Petr},
title = {Linear rescaling of the stochastic process},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {277--289},
year = {1992},
volume = {33},
number = {2},
mrnumber = {1189658},
zbl = {0757.60034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a7/}
}
Lachout, Petr. Linear rescaling of the stochastic process. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 277-289. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a7/
[1] Aczél J.: Lectures on Functional Equations and their Applications. Academic Press, New York, 1966. | MR
[2] Hudson W.H., Mason J.D.: Operator-self-similar processes in a finite-dimensional space. Trans. AMS 273 (1982), 281-297. | MR | Zbl
[3] Jarník V.: Differential Calculus II (in Czech). Academia, Prague, 1976.
[4] Laha R.G., Rohatgi V.K.: Operator self similar stochastic processes in $R_+^d$. Stochastic Process. Appl. 12 (1982), 73-84. | MR
[5] Lamperti J.: Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104 (1962), 62-78. | MR | Zbl
[6] Vervaat W.: Properties of General Self-Similar Processes. 46th Session of the International Statistical Institute of Tokyo, Japan, 1987. | MR | Zbl
[7] Weissman I.: On location and scale functions of a class of limiting processes with application to extreme value theory. Ann. Probab. 3 (1975), 178-181. | MR | Zbl