Four-dimensional curvature homogeneous spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 261-268 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that a four-dimensional, connected, simply connected and complete Riemannian manifold which is curvature homogeneous up to order two is a homogeneous Riemannian space.
We prove that a four-dimensional, connected, simply connected and complete Riemannian manifold which is curvature homogeneous up to order two is a homogeneous Riemannian space.
Classification : 53C20, 53C30
Keywords: Riemannian manifold; curvature homogeneous spaces; homogeneous spaces
@article{CMUC_1992_33_2_a5,
     author = {Sekigawa, Kouei and Suga, Hiroshi and Vanhecke, Lieven},
     title = {Four-dimensional curvature homogeneous spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {261--268},
     year = {1992},
     volume = {33},
     number = {2},
     mrnumber = {1189656},
     zbl = {0763.53043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a5/}
}
TY  - JOUR
AU  - Sekigawa, Kouei
AU  - Suga, Hiroshi
AU  - Vanhecke, Lieven
TI  - Four-dimensional curvature homogeneous spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 261
EP  - 268
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a5/
LA  - en
ID  - CMUC_1992_33_2_a5
ER  - 
%0 Journal Article
%A Sekigawa, Kouei
%A Suga, Hiroshi
%A Vanhecke, Lieven
%T Four-dimensional curvature homogeneous spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 261-268
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a5/
%G en
%F CMUC_1992_33_2_a5
Sekigawa, Kouei; Suga, Hiroshi; Vanhecke, Lieven. Four-dimensional curvature homogeneous spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 261-268. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a5/

[1] Bérard Bergery L.: Les espaces homogènes riemanniens de dimension $4$. Géométrie riemannienne en dimension 4, Séminaire A. Besse, Cedic, Paris, 1981, 40-60. | MR

[2] Derdziński A.: preprint.

[3] Gromov M.: Partial differential equations. Ergeb. Math. Grenzgeb. 3 Folge 9, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

[4] Jensen G.: Homogeneous Einstein spaces in dimension four. J. Differential Geom. 3 (1969), 309-349. | MR

[5] Kowalski O.: A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolinae 30 (1989), 85-88. | MR | Zbl

[6] Kowalski O., Tricerri F., Vanhecke L.: Exemples nouveaux de variétés riemanniennes non- homogènes dont le tenseur de courbure est celui d'un espace symétrique riemannien. C.R. Acad. Sci. Paris Sér. I 311 (1990), 355-360. | MR

[7] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl., to appear. | MR | Zbl

[8] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous spaces with a solvable Lie group as homogeneous model. to appear. | MR | Zbl

[9] Sekigawa K.: On the Riemannian manifolds of the form $B\times _f F$. Kōdai Math. Sem. Rep. 26 (1975), 343-347. | MR | Zbl

[10] Sekigawa K.: On some $3$-dimensional curvature homogeneous spaces. Tensor N.S. 31 (1977), 87-97. | MR | Zbl

[11] Singer M.I.: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697. | MR | Zbl

[12] Takagi H.: On curvature homogeneity of Riemannian manifolds. Tôhoku Math. J. 26 (1974), 581-585. | MR | Zbl

[13] Tricerri F., Vanhecke L.: Curvature homogeneous Riemannian manifolds. Ann. Sci. Ecole Norm. Sup. 22 (1989), 535-554. | MR | Zbl