Keywords: Riemannian manifold; curvature homogeneous spaces; homogeneous spaces
@article{CMUC_1992_33_2_a5,
author = {Sekigawa, Kouei and Suga, Hiroshi and Vanhecke, Lieven},
title = {Four-dimensional curvature homogeneous spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {261--268},
year = {1992},
volume = {33},
number = {2},
mrnumber = {1189656},
zbl = {0763.53043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a5/}
}
TY - JOUR AU - Sekigawa, Kouei AU - Suga, Hiroshi AU - Vanhecke, Lieven TI - Four-dimensional curvature homogeneous spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 261 EP - 268 VL - 33 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a5/ LA - en ID - CMUC_1992_33_2_a5 ER -
Sekigawa, Kouei; Suga, Hiroshi; Vanhecke, Lieven. Four-dimensional curvature homogeneous spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 261-268. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a5/
[1] Bérard Bergery L.: Les espaces homogènes riemanniens de dimension $4$. Géométrie riemannienne en dimension 4, Séminaire A. Besse, Cedic, Paris, 1981, 40-60. | MR
[2] Derdziński A.: preprint.
[3] Gromov M.: Partial differential equations. Ergeb. Math. Grenzgeb. 3 Folge 9, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[4] Jensen G.: Homogeneous Einstein spaces in dimension four. J. Differential Geom. 3 (1969), 309-349. | MR
[5] Kowalski O.: A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolinae 30 (1989), 85-88. | MR | Zbl
[6] Kowalski O., Tricerri F., Vanhecke L.: Exemples nouveaux de variétés riemanniennes non- homogènes dont le tenseur de courbure est celui d'un espace symétrique riemannien. C.R. Acad. Sci. Paris Sér. I 311 (1990), 355-360. | MR
[7] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl., to appear. | MR | Zbl
[8] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous spaces with a solvable Lie group as homogeneous model. to appear. | MR | Zbl
[9] Sekigawa K.: On the Riemannian manifolds of the form $B\times _f F$. Kōdai Math. Sem. Rep. 26 (1975), 343-347. | MR | Zbl
[10] Sekigawa K.: On some $3$-dimensional curvature homogeneous spaces. Tensor N.S. 31 (1977), 87-97. | MR | Zbl
[11] Singer M.I.: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697. | MR | Zbl
[12] Takagi H.: On curvature homogeneity of Riemannian manifolds. Tôhoku Math. J. 26 (1974), 581-585. | MR | Zbl
[13] Tricerri F., Vanhecke L.: Curvature homogeneous Riemannian manifolds. Ann. Sci. Ecole Norm. Sup. 22 (1989), 535-554. | MR | Zbl