Semigroup formulation of Rothe's method: application to parabolic problems
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 245-260 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe's method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.
A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe's method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.
Classification : 35G10, 35K22, 35K25, 47D03, 65M15, 65M20
Keywords: error estimates; parabolic equation; backward Euler method
@article{CMUC_1992_33_2_a4,
     author = {Slodi\v{c}ka, Mari\'an},
     title = {Semigroup formulation of {Rothe's} method: application to parabolic problems},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {245--260},
     year = {1992},
     volume = {33},
     number = {2},
     mrnumber = {1189655},
     zbl = {0756.65121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a4/}
}
TY  - JOUR
AU  - Slodička, Marián
TI  - Semigroup formulation of Rothe's method: application to parabolic problems
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 245
EP  - 260
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a4/
LA  - en
ID  - CMUC_1992_33_2_a4
ER  - 
%0 Journal Article
%A Slodička, Marián
%T Semigroup formulation of Rothe's method: application to parabolic problems
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 245-260
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a4/
%G en
%F CMUC_1992_33_2_a4
Slodička, Marián. Semigroup formulation of Rothe's method: application to parabolic problems. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a4/

[1] Choudury G.: Fully discrete Galerkin approximations of parabolic boundary-value problems with nonsmooth boundary data. Numer. Math. 57 (1990), 179-203. | MR | Zbl

[2] Crouzeix M., Thomée V.: On the discretization in time of semilinear parabolic equations with nonsmooth initial data. Math. Comp. 49 (1987), 359-377. | MR

[3] Henry D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840, Springer Verlag, Berlin-Heidelberg-New York, 1981. | MR | Zbl

[4] Kačur J.: Method of Rothe in Evolution Equations. Teubner Texte zur Math. 80, Leipzig, 1985. | MR

[5] Kačur J.: Application of Rothe's method to evolution Integrodifferential equations. J. reine angew. Math. 388 (1988), 73-105. | MR | Zbl

[6] Kačur J.: On $L_\infty $-convergence of Rothe's method. Comment. Math. Univ. Carolinae 30 (1989), 505-510. | MR

[7] Le Roux M.N.: Semidiscretization in time for parabolic problems. Math. Comp. 33 (1979), 919-931. | MR | Zbl

[8] Le Roux M.N., Thomée V.: Numerical solution of semilinear integrodifferential equations of parabolic type with nonsmooth data. SIAM J. Numer. Anal. 26 (1989), 1291-1309. | MR

[9] Luskin M., Rannacher R.: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1982), 93-113. | MR | Zbl

[10] Mingyou H., Thomée V.: On the backward Euler method for parabolic equations with rough initial data. SIAM J. Numer. Anal. 19 (1982), 599-603. | MR

[11] Rannacher R.: $L_\infty $-Stability Estimates and Asymptotic Error Expansion for Parabolic Finite Element Equations. preprint 589, Universität Heidelberg, Sonderforschungsbereich 123, Stochastische mathematische Modelle, 1990. | MR

[12] Schatz A.H., Thomée V., Wahlbin L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33 (1980), 265-304. | MR

[13] Slodička M.: Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space. Apl. Mat. 34 (1989), 439-448. | MR

[14] Slodička M.: An investigation of convergence and error estimate of approximate solution for a quasilinear parabolic integrodifferential equation. Apl. Mat. 35 (1990), 16-27. | MR

[15] Slodička M.: Error Estimates for Discretization in Time to Linear Homogeneous Parabolic Equations with Nonsmooth Initial data. preprint JINR E5-90-8, Dubna, 1990.

[16] Slodička M.: Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data. Comment. Math. Univ. Carolinae 32 (1991), 703-713. | MR

[17] Taylor A.E.: Introduction to Functional Analysis. John Wiley & Sons, Inc., New York, 1958. | MR | Zbl

[18] Thomée V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Math. 1054, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1984. | MR

[19] Thomée V.: On the Numerical Solution of Integro-Differential Equations of Parabolic Type. Inter. Ser. Numer. Math. 86, Birkhauser Verlag Basel, 1988, 477-493. | MR