Keywords: error estimates; parabolic equation; backward Euler method
@article{CMUC_1992_33_2_a4,
author = {Slodi\v{c}ka, Mari\'an},
title = {Semigroup formulation of {Rothe's} method: application to parabolic problems},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {245--260},
year = {1992},
volume = {33},
number = {2},
mrnumber = {1189655},
zbl = {0756.65121},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a4/}
}
TY - JOUR AU - Slodička, Marián TI - Semigroup formulation of Rothe's method: application to parabolic problems JO - Commentationes Mathematicae Universitatis Carolinae PY - 1992 SP - 245 EP - 260 VL - 33 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a4/ LA - en ID - CMUC_1992_33_2_a4 ER -
Slodička, Marián. Semigroup formulation of Rothe's method: application to parabolic problems. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 245-260. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a4/
[1] Choudury G.: Fully discrete Galerkin approximations of parabolic boundary-value problems with nonsmooth boundary data. Numer. Math. 57 (1990), 179-203. | MR | Zbl
[2] Crouzeix M., Thomée V.: On the discretization in time of semilinear parabolic equations with nonsmooth initial data. Math. Comp. 49 (1987), 359-377. | MR
[3] Henry D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840, Springer Verlag, Berlin-Heidelberg-New York, 1981. | MR | Zbl
[4] Kačur J.: Method of Rothe in Evolution Equations. Teubner Texte zur Math. 80, Leipzig, 1985. | MR
[5] Kačur J.: Application of Rothe's method to evolution Integrodifferential equations. J. reine angew. Math. 388 (1988), 73-105. | MR | Zbl
[6] Kačur J.: On $L_\infty $-convergence of Rothe's method. Comment. Math. Univ. Carolinae 30 (1989), 505-510. | MR
[7] Le Roux M.N.: Semidiscretization in time for parabolic problems. Math. Comp. 33 (1979), 919-931. | MR | Zbl
[8] Le Roux M.N., Thomée V.: Numerical solution of semilinear integrodifferential equations of parabolic type with nonsmooth data. SIAM J. Numer. Anal. 26 (1989), 1291-1309. | MR
[9] Luskin M., Rannacher R.: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1982), 93-113. | MR | Zbl
[10] Mingyou H., Thomée V.: On the backward Euler method for parabolic equations with rough initial data. SIAM J. Numer. Anal. 19 (1982), 599-603. | MR
[11] Rannacher R.: $L_\infty $-Stability Estimates and Asymptotic Error Expansion for Parabolic Finite Element Equations. preprint 589, Universität Heidelberg, Sonderforschungsbereich 123, Stochastische mathematische Modelle, 1990. | MR
[12] Schatz A.H., Thomée V., Wahlbin L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33 (1980), 265-304. | MR
[13] Slodička M.: Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space. Apl. Mat. 34 (1989), 439-448. | MR
[14] Slodička M.: An investigation of convergence and error estimate of approximate solution for a quasilinear parabolic integrodifferential equation. Apl. Mat. 35 (1990), 16-27. | MR
[15] Slodička M.: Error Estimates for Discretization in Time to Linear Homogeneous Parabolic Equations with Nonsmooth Initial data. preprint JINR E5-90-8, Dubna, 1990.
[16] Slodička M.: Smoothing effect and discretization in time to semilinear parabolic equations with nonsmooth data. Comment. Math. Univ. Carolinae 32 (1991), 703-713. | MR
[17] Taylor A.E.: Introduction to Functional Analysis. John Wiley & Sons, Inc., New York, 1958. | MR | Zbl
[18] Thomée V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Math. 1054, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1984. | MR
[19] Thomée V.: On the Numerical Solution of Integro-Differential Equations of Parabolic Type. Inter. Ser. Numer. Math. 86, Birkhauser Verlag Basel, 1988, 477-493. | MR