Totally convex algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 205-235 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By definition a totally convex algebra $A$ is a totally convex space $|A|$ equipped with an associative multiplication, i.e\. a morphism $\mu :|A|\otimes |A|\longrightarrow |A|$ of totally convex spaces. In this paper we introduce, for such algebras, the notions of ideal, tensor product, unitization, inverses, weak inverses, quasi-inverses, weak quasi-inverses and the spectrum of an element and investigate them in detail. This leads to a considerable generalization of the corresponding notions and results in the theory of Banach spaces.
By definition a totally convex algebra $A$ is a totally convex space $|A|$ equipped with an associative multiplication, i.e\. a morphism $\mu :|A|\otimes |A|\longrightarrow |A|$ of totally convex spaces. In this paper we introduce, for such algebras, the notions of ideal, tensor product, unitization, inverses, weak inverses, quasi-inverses, weak quasi-inverses and the spectrum of an element and investigate them in detail. This leads to a considerable generalization of the corresponding notions and results in the theory of Banach spaces.
Classification : 46H05, 46H10, 46H20, 46H99, 46K05, 46K99, 46M15, 46M99
Keywords: totally convex algebra; Eilenberg-Moore algebra; Banach algebra; ideal; (weak) inverse; spectrum
@article{CMUC_1992_33_2_a2,
     author = {Pumpl\"un, Dieter and R\"ohrl, Helmut},
     title = {Totally convex algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {205--235},
     year = {1992},
     volume = {33},
     number = {2},
     mrnumber = {1189653},
     zbl = {0763.46036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a2/}
}
TY  - JOUR
AU  - Pumplün, Dieter
AU  - Röhrl, Helmut
TI  - Totally convex algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 205
EP  - 235
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a2/
LA  - en
ID  - CMUC_1992_33_2_a2
ER  - 
%0 Journal Article
%A Pumplün, Dieter
%A Röhrl, Helmut
%T Totally convex algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 205-235
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a2/
%G en
%F CMUC_1992_33_2_a2
Pumplün, Dieter; Röhrl, Helmut. Totally convex algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 205-235. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a2/

[1] Bonsall F.F., Duncan J.: Complete normed algebras. Springer, Erg. Math., Berlin-Heidelberg-New York, 1973. | MR | Zbl

[2] Bourbaki N.: Eléments de mathématiques. Algèbre, chap. III, Hermann, Paris, 1970. | MR | Zbl

[3] Cohn P.M.: Universal algebra. Harper & Row, New York-Evanston-London, 1965. | MR | Zbl

[4] Pelletier J.W., Rosický J.: Generating the monadic theory of C$^\ast $-algebras and related categories. Categorical topology and its relation to analysis, algebra and combinatorics, Conf. Proc. Prague 1988, World Scientif. Publ. Singapore, New Jersey, London, Hongkong (1989), 163-180. | MR

[5] Pierce R.S.: Introduction to the theory of abstract algebras. Holt, Rinehart and Winston, New York, 1965. | MR

[6] Pumplün D., Röhrl H.: Banach spaces and totally convex spaces I. Comm. Alg. 12 (1984), 953-1019. | MR

[7] Pumplün D., Röhrl H.: Banach spaces and totally convex spaces II. Comm. Alg. 13 (1985), 1047-1113. | MR

[8] Pumplün D., Röhrl H.: Separated totally convex spaces. man. math. 50 (1985), 145-183. | MR

[9] Pumplün D., Röhrl H.: The coproduct of totally convex spaces. Beitr. Alg. u. Geom. 24 (1987), 249-278. | MR

[10] Pumplün D., Röhrl H.: Congruence relations on totally convex spaces. Comm. Alg. 18 (1990), 1469-1496. | MR

[11] Pumplün D.: Regularly ordered Banach spaces and positively convex spaces. Results Math. 7 (1984), 85-112. | MR

[12] Pumplün D.: The Hahn-Banach Theorem for totally convex spaces. Dem. Math. XVIII (1985), 567-588. | MR

[13] Pumplün D.: Eilenberg-Moore algebras revisited. Seminarberichte, FB Mathematik u. Inf., Fernuniversität, 29 (1988), 97-144.

[14] Rickart Ch.E.: General theory of Banach algebras. R.E. Krieger Publ. Co. Huntington, N.Y., 1974. | Zbl

[15] Tholen W.: Relative Bildverzerlegungen und algebraische Kategorien. Ph.D. thesis, U. Münster, 1974.