Continuous actions of pseudocompact groups and axioms of topological group
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 335-343 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we show that it is possible to extend the Ellis theorem, establishing the relations between axioms of a topological group on a new class $\mathcal N$ of spaces containing all countably compact spaces in the case of Abelian group structure. We extend statements of the Ellis theorem concerning separate and joint continuity of group inverse on the class of spaces $\mathcal N$ that gives some new examples and statements for the $C_p$-theory and theory of topologically homogeneous spaces.
In this paper, we show that it is possible to extend the Ellis theorem, establishing the relations between axioms of a topological group on a new class $\mathcal N$ of spaces containing all countably compact spaces in the case of Abelian group structure. We extend statements of the Ellis theorem concerning separate and joint continuity of group inverse on the class of spaces $\mathcal N$ that gives some new examples and statements for the $C_p$-theory and theory of topologically homogeneous spaces.
Classification : 22A05, 22B05, 54B15, 54C35, 54H11
Keywords: $m$-topological group; semitopological group; paratopological group; topological group; topology of pointwise convergence; Eberlein compact; weak functional tightness
@article{CMUC_1992_33_2_a14,
     author = {Korovin, Alexander V.},
     title = {Continuous actions of pseudocompact groups and axioms of topological group},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {335--343},
     year = {1992},
     volume = {33},
     number = {2},
     mrnumber = {1189665},
     zbl = {0786.22002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a14/}
}
TY  - JOUR
AU  - Korovin, Alexander V.
TI  - Continuous actions of pseudocompact groups and axioms of topological group
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 335
EP  - 343
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a14/
LA  - en
ID  - CMUC_1992_33_2_a14
ER  - 
%0 Journal Article
%A Korovin, Alexander V.
%T Continuous actions of pseudocompact groups and axioms of topological group
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 335-343
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a14/
%G en
%F CMUC_1992_33_2_a14
Korovin, Alexander V. Continuous actions of pseudocompact groups and axioms of topological group. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 335-343. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a14/

[1] Arhangel'skiĭ A.V.: Topologicheskie prostranstva funktsyĭ (in Russian). Moscow, MSU, 1989.

[2] Arhangel'skiĭ A.V.: Functional tightness, $Q$-spaces and $\tau $-embeddings. Comment. Math. Univ. Carolinae 24 (1983), 105-120. | MR

[3] Arhangel'skiĭ A.V., Tkačuk V.V.: Prostranstva funktsyĭ v topologii potochechnoĭ skhodimosti (in Russian). Moscow, MSU, 1985.

[4] Asanov M.O., Veličko N.V.: Kompaktnye množestva v $C_p$ (in Russian). Comment. Math. Univ. Carolinae 22 (1981), 255-266. | MR

[5] Bourbaki N.: Topologie générale. Chapt. III, Groupes topologiques (Théorie élémentaire), Hermann, Paris, 1942. | Zbl

[6] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups. Pacific J. Math. 16 (3) (1966), 483-496. | MR | Zbl

[7] Douglas L. Grant: The Wallace problem and continuity of the inverse in pseudocompact groups. preprint, 1987. | MR

[8] Ellis R.: Locally compact transformation groups. Duke Math. Journ. 27 (2) (1957), 119-125. | MR | Zbl

[9] Engelking R.: General Topology. Warszawa, PWN, 1977. | MR | Zbl

[10] Ivanovskiĭ L.I.: Ob odnoĭ gipoteze P.S. Aleksandrova (in Russian). Dokl. Akad. Nauk SSSR 123 (3) (1959), 786-788.

[11] Korovin A.V.: Nepreryvnye deĭstvija psevdokompaktnych grupp i aksiomy topologicheskoĭ gruppy (in Russian). VINITI, N 3734-V 90 (1990).

[12] Korovin A.V.: Nepreryvnye deĭstvija abelevyh grupp i topologicheskie svoĭstva v $C_p$-teorii gruppy (in Russian). Ph.D. Thesis (Dissertation), Moscow, MSU, 1990.

[13] Kuz'minov V.I.: O gipoteze P.S. Aleksandrova v teorii topologicheskich grupp (in Russian). Dokl. Akad. Nauk SSSR 125 (3) (1959), 727-729.

[14] Namioka I.: Separate continuity and joint continuity. Pacific J. Math. 51 (2) 1974 (), 513-536. | MR | Zbl

[15] Preiss D., Simon P.: A weakly pseudocompact subspaces of a Banach space is weakly compact. Comment. Math. Univ. Carolinae 15 (1974), 603-610. | MR