Keywords: Dugundji space; projective Boolean algebra; profinite lattice; supercompact
@article{CMUC_1992_33_2_a13,
author = {Heindorf, Lutz},
title = {Zero-dimensional {Dugundji} spaces admit profinite lattice structures},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {329--334},
year = {1992},
volume = {33},
number = {2},
mrnumber = {1189664},
zbl = {0789.54011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a13/}
}
Heindorf, Lutz. Zero-dimensional Dugundji spaces admit profinite lattice structures. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 329-334. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a13/
[B] Bell M.G.: Not all dyadic spaces are supercompact. Comment. Math. Univ. Carolinae 31 (1990), 775-779. | MR | Zbl
[BG] Bell M.G., Ginsburg J.: Compact spaces and spaces of maximal complete subgraphs. Trans. Amer. Math. Soc. 283 (1984), 329-338. | MR | Zbl
[CP] Clifford A.H., Preston B.: The algebraic theory of semigroups. vol. 1, Providence, 1964. | Zbl
[Ha] Haydon R.: On a problem of Pelczynski: Miljutin spaces, Dugundji spaces and ${AE}(0$-$\dim)$. Studia Math. 52 (1974), 23-31. | MR
[He] Heindorf L.: Boolean semigroup rings and exponentials of compact, zero-dimensional spaces. Fund. Math. 135 (1990), 37-47. | MR | Zbl
[K] Koppelberg S.: Projective Boolean Algebras. Chapter 20 of: J.D. Monk (ed.), Handbook of Boolean algebras, Amsterdam, 1989, vol. 3, 741-773. | MR | Zbl
[N] Numakura K.: Theorems on compact totally disconnected semigroups and lattices. Proc. Amer. Math. Soc. 8 (1957), 623-626. | MR | Zbl
[S] Sčepin E.V.: Functors and uncountable powers of compacts (in Russian). Uspehi Mat. Nauk 36 (1981), 3-62. | MR