Zero-dimensional Dugundji spaces admit profinite lattice structures
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 329-334 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.
We prove what the title says. It then follows that zero-dimensional Dugundji space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to be semigroup algebras.
Classification : 06B35, 06E05, 54B25, 54B35, 54F50, 54H12
Keywords: Dugundji space; projective Boolean algebra; profinite lattice; supercompact
@article{CMUC_1992_33_2_a13,
     author = {Heindorf, Lutz},
     title = {Zero-dimensional {Dugundji} spaces admit profinite lattice structures},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {329--334},
     year = {1992},
     volume = {33},
     number = {2},
     mrnumber = {1189664},
     zbl = {0789.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a13/}
}
TY  - JOUR
AU  - Heindorf, Lutz
TI  - Zero-dimensional Dugundji spaces admit profinite lattice structures
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 329
EP  - 334
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a13/
LA  - en
ID  - CMUC_1992_33_2_a13
ER  - 
%0 Journal Article
%A Heindorf, Lutz
%T Zero-dimensional Dugundji spaces admit profinite lattice structures
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 329-334
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a13/
%G en
%F CMUC_1992_33_2_a13
Heindorf, Lutz. Zero-dimensional Dugundji spaces admit profinite lattice structures. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 329-334. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a13/

[B] Bell M.G.: Not all dyadic spaces are supercompact. Comment. Math. Univ. Carolinae 31 (1990), 775-779. | MR | Zbl

[BG] Bell M.G., Ginsburg J.: Compact spaces and spaces of maximal complete subgraphs. Trans. Amer. Math. Soc. 283 (1984), 329-338. | MR | Zbl

[CP] Clifford A.H., Preston B.: The algebraic theory of semigroups. vol. 1, Providence, 1964. | Zbl

[Ha] Haydon R.: On a problem of Pelczynski: Miljutin spaces, Dugundji spaces and ${AE}(0$-$\dim)$. Studia Math. 52 (1974), 23-31. | MR

[He] Heindorf L.: Boolean semigroup rings and exponentials of compact, zero-dimensional spaces. Fund. Math. 135 (1990), 37-47. | MR | Zbl

[K] Koppelberg S.: Projective Boolean Algebras. Chapter 20 of: J.D. Monk (ed.), Handbook of Boolean algebras, Amsterdam, 1989, vol. 3, 741-773. | MR | Zbl

[N] Numakura K.: Theorems on compact totally disconnected semigroups and lattices. Proc. Amer. Math. Soc. 8 (1957), 623-626. | MR | Zbl

[S] Sčepin E.V.: Functors and uncountable powers of compacts (in Russian). Uspehi Mat. Nauk 36 (1981), 3-62. | MR