Bourbaki's Fixpoint Lemma reconsidered
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 303-309 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A constructively valid counterpart to Bourbaki's Fixpoint Lemma for chain-complete partially ordered sets is presented to obtain a condition for one closure system in a complete lattice $L$ to be stable under another closure operator of $L$. This is then used to deal with coproducts and other aspects of frames.
A constructively valid counterpart to Bourbaki's Fixpoint Lemma for chain-complete partially ordered sets is presented to obtain a condition for one closure system in a complete lattice $L$ to be stable under another closure operator of $L$. This is then used to deal with coproducts and other aspects of frames.
Classification : 04A05, 06A06, 06A15, 06B23, 06B30, 18B25, 54A99, 54B99, 54H99
Keywords: complete lattice; closure operator; fixpoint; frame coproduct; compact frame
@article{CMUC_1992_33_2_a10,
     author = {Banaschewski, B.},
     title = {Bourbaki's {Fixpoint} {Lemma} reconsidered},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {303--309},
     year = {1992},
     volume = {33},
     number = {2},
     mrnumber = {1189661},
     zbl = {0779.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a10/}
}
TY  - JOUR
AU  - Banaschewski, B.
TI  - Bourbaki's Fixpoint Lemma reconsidered
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 303
EP  - 309
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a10/
LA  - en
ID  - CMUC_1992_33_2_a10
ER  - 
%0 Journal Article
%A Banaschewski, B.
%T Bourbaki's Fixpoint Lemma reconsidered
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 303-309
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a10/
%G en
%F CMUC_1992_33_2_a10
Banaschewski, B. Bourbaki's Fixpoint Lemma reconsidered. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 2, pp. 303-309. http://geodesic.mathdoc.fr/item/CMUC_1992_33_2_a10/

[1] Banaschewski B.: Another look at the localic Tychonoff Theorem. Comment. Math. Univ. Carolinae 29 (1988), 647-656. | MR | Zbl

[2] Johnstone P.T.: Topos Theory. Academic Press, London-New York-San Francisco, 1977. | MR | Zbl

[3] Johnstone P.T.: Stone Spaces. Cambridge University Press, 1982. | MR | Zbl

[4] Vermeulen J.J.C.: A note on iterative arguments in a topos. preprint, 1990. | MR | Zbl

[5] Vermeulen J.J.C.: Some constructive results related to compactness and the (strong) Hausdorff property for locales. preprint, 1991. | MR | Zbl

[6] Witt E.: Beweisstudien zum Satz von M. Zorn. Math. Nachr. 4 (1951), 434-438. | MR | Zbl