Keywords: multifunctions; semi-Carathéodory multifunctions; product measurable; superpositionally measurable
@article{CMUC_1992_33_1_a9,
author = {Zygmunt, Wojciech},
title = {On superpositionally measurable {semi-Carath\'eodory} multifunctions},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {73--77},
year = {1992},
volume = {33},
number = {1},
mrnumber = {1173749},
zbl = {0756.28008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a9/}
}
Zygmunt, Wojciech. On superpositionally measurable semi-Carathéodory multifunctions. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 73-77. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a9/
[1] Appel J.: The superposition operator in function spaces - a survey. Expo. Math. 6 (1988), 209-270. | MR
[2] Castaing C., Valadier M.: Convex analysis and measurable multifunctions. Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin, 1977. | MR | Zbl
[3] Himmelberg C.J.: Measurable relations. Fund. Math. 87 (1975), 53-72. | MR | Zbl
[4] Kucia A.: On the existence of Carathéodory selectors. Bull. Pol. Acad., Math. 32 (1984), 233-241. | MR | Zbl
[5] Lojasiewicz S.Jr.: Some theorems of Scorza-Dragoni type for multifunctions with application to the problem of existence of solutions for differential multivalued equations. Mathematical Control Theory, Banach Cent. Publ., vol. 14, PWN - Polish Scientific Publishers, Warsaw, 1985, 625-643. | MR | Zbl
[6] Mordukhovich B.Š.: Some properties of multivalued mappings and differential inclusions with an application to problems of the existence of solutions for optimal controls (in Russian). Izvestiya Akad. Nauk BSSR 1981, VINITI No. 5268-80.
[7] Nowak A.: Random differential inclusions; measurable selection approach. Ann. Polon. Math. 49 (1989), 291-296. | MR | Zbl
[8] Papageorgiou N.S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 32 (1987), 437-464. | MR | Zbl
[9] Papageorgiou N.S.: On multivalued evolution equations and differential inclusions in Banach spaces. Comment. Math. Univ. St. Pauli 36 (1987), 21-39. | MR | Zbl
[10] Sainte-Beuve M.F.: On the extension of von Neumann-Aumann's theorem. J. Funct. Anal. 17 (1974), 112-129. | MR | Zbl
[11] Spakowski A.: On superpositionally measurable multifunctions. Acta Univ. Carol., Math. Phys., No. 2, 30 (1989), 149-151. | MR | Zbl
[12] Tsalyuk V.Z.: On superpositionally measurable multifunctions (in Russian). Mat. Zametki 43 (1988), 98-102.
[13] Wagner D.H.: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859-903. | MR | Zbl
[14] Zygmunt W.: The Scorza-Dragoni's type property and product measurability of a multifunction of two variables. Rend. Acad. Naz. Sci., XL. Mem. Mat. 12 (1988), 109-115. | MR | Zbl