@article{CMUC_1992_33_1_a8,
author = {Pyrih, Pavel},
title = {Logarithmic capacity is not subadditive {\textendash} a fine topology approach},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {67--72},
year = {1992},
volume = {33},
number = {1},
mrnumber = {1173748},
zbl = {0764.31006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a8/}
}
Pyrih, Pavel. Logarithmic capacity is not subadditive – a fine topology approach. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a8/
[1] Brelot M.: Lectures on Potential Theory. Tata Institute of Fundamental Research Bombay (1966). | MR
[2] Brelot M.: On Topologies and Boundaries in Potential Theory. Lecture Notes in Mathematics No. 175, Springer-Verlag, Berlin (1971). | MR | Zbl
[3] Doob J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Springer, New-York (1984). | MR | Zbl
[4] Fuglede B.: Fine Topology and Finely Holomorphic Functions. Proc. 18th Scand. Congr. Math. Aarhus (1980), 22-38. | MR
[5] Fuglede B.: Sur les fonctions finement holomorphes. Ann. Inst. Fourier (Grenoble) 31.4 (1981), 57-88. | MR | Zbl
[6] Hayman W.K.: Subharmonic functions, Vol.2. London Math. Society Monographs 20, Academic Press London (1989). | MR
[7] Helms L.L.: Introduction to Potential Theory. Wiley Interscience Pure and Applied Mathematics 22, New-York (1969). | MR | Zbl
[8] Landkof N.S.: Foundations of Modern Potential Theory. Russian Moscow (1966).
[9] Landkof N.S.: Foundations of Modern Potential Theory. (translation from [8]), Springer-Verlag, Berlin (1972). | MR | Zbl
[10] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory. Lecture Notes in Mathematics No. 1189, Springer-Verlag, Berlin (1986). | MR