Logarithmic capacity is not subadditive – a fine topology approach
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 67-72 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In Landkof's monograph [8, p. 213] it is asserted that logarithmic capacity is strongly subadditive, and therefore that it is a Choquet capacity. An example demonstrating that logarithmic capacity is not even subadditive can be found e.g\. in [6, Example 7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine topology in potential theory.
In Landkof's monograph [8, p. 213] it is asserted that logarithmic capacity is strongly subadditive, and therefore that it is a Choquet capacity. An example demonstrating that logarithmic capacity is not even subadditive can be found e.g\. in [6, Example 7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine topology in potential theory.
Classification : 30C85, 31A15, 31C40, 60J45
Keywords: logarithmic capacity; fine topology
@article{CMUC_1992_33_1_a8,
     author = {Pyrih, Pavel},
     title = {Logarithmic capacity is not subadditive {\textendash} a fine topology approach},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {67--72},
     year = {1992},
     volume = {33},
     number = {1},
     mrnumber = {1173748},
     zbl = {0764.31006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a8/}
}
TY  - JOUR
AU  - Pyrih, Pavel
TI  - Logarithmic capacity is not subadditive – a fine topology approach
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 67
EP  - 72
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a8/
LA  - en
ID  - CMUC_1992_33_1_a8
ER  - 
%0 Journal Article
%A Pyrih, Pavel
%T Logarithmic capacity is not subadditive – a fine topology approach
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 67-72
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a8/
%G en
%F CMUC_1992_33_1_a8
Pyrih, Pavel. Logarithmic capacity is not subadditive – a fine topology approach. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a8/

[1] Brelot M.: Lectures on Potential Theory. Tata Institute of Fundamental Research Bombay (1966). | MR

[2] Brelot M.: On Topologies and Boundaries in Potential Theory. Lecture Notes in Mathematics No. 175, Springer-Verlag, Berlin (1971). | MR | Zbl

[3] Doob J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Springer, New-York (1984). | MR | Zbl

[4] Fuglede B.: Fine Topology and Finely Holomorphic Functions. Proc. 18th Scand. Congr. Math. Aarhus (1980), 22-38. | MR

[5] Fuglede B.: Sur les fonctions finement holomorphes. Ann. Inst. Fourier (Grenoble) 31.4 (1981), 57-88. | MR | Zbl

[6] Hayman W.K.: Subharmonic functions, Vol.2. London Math. Society Monographs 20, Academic Press London (1989). | MR

[7] Helms L.L.: Introduction to Potential Theory. Wiley Interscience Pure and Applied Mathematics 22, New-York (1969). | MR | Zbl

[8] Landkof N.S.: Foundations of Modern Potential Theory. Russian Moscow (1966).

[9] Landkof N.S.: Foundations of Modern Potential Theory. (translation from [8]), Springer-Verlag, Berlin (1972). | MR | Zbl

[10] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory. Lecture Notes in Mathematics No. 1189, Springer-Verlag, Berlin (1986). | MR