On the boundedness of the mapping $f\to |f|$ in Besov spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 57-66 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For $1\leq p\leq\infty$, precise conditions on the parameters are given under which the particular superposition operator $T:f\to |f|$ is a bounded map in the Besov space $B^s_{p,q}(R^1)$. The proofs rely on linear spline approximation theory.
For $1\leq p\leq\infty$, precise conditions on the parameters are given under which the particular superposition operator $T:f\to |f|$ is a bounded map in the Besov space $B^s_{p,q}(R^1)$. The proofs rely on linear spline approximation theory.
Classification : 35B45, 41A15, 46E35, 47H30
Keywords: Nemytzki operators; Besov spaces; moduli of smoothness; linear splines
@article{CMUC_1992_33_1_a7,
     author = {Oswald, P.},
     title = {On the boundedness of the mapping $f\to |f|$ in {Besov} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {57--66},
     year = {1992},
     volume = {33},
     number = {1},
     mrnumber = {1173747},
     zbl = {0766.46018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a7/}
}
TY  - JOUR
AU  - Oswald, P.
TI  - On the boundedness of the mapping $f\to |f|$ in Besov spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1992
SP  - 57
EP  - 66
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a7/
LA  - en
ID  - CMUC_1992_33_1_a7
ER  - 
%0 Journal Article
%A Oswald, P.
%T On the boundedness of the mapping $f\to |f|$ in Besov spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 1992
%P 57-66
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a7/
%G en
%F CMUC_1992_33_1_a7
Oswald, P. On the boundedness of the mapping $f\to |f|$ in Besov spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a7/

[AZ] Appell J., Zabrejko P.: Nonlinear superposition operators. Cambr. Univ. Press, Cambridge, 1990. | MR | Zbl

[BM] Bourdaud G., Meyer Y.: Fonctions qui operent sur les espaces de Sobolev. J. Funct. Anal. 97 (1991), 351-360. | MR | Zbl

[CW] Cazenave T., Weissler F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$. Nonl. Anal. Th. Meth. Appl. 14 (1990), 807-836. | MR

[MM1] Marcus M., Mizel V.J.: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rat. Mech. Anal. 45 (1972), 294-320. | MR | Zbl

[MM2] Marcus M., Mizel V.J.: Nemitsky operators on Sobolev spaces. Arch. Rat. Mech. Anal. 51 (1973), 347-370. | MR | Zbl

[MM3] Marcus M., Mizel V.J.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33 (1978), 217-229. | MR

[N] Nikolskij S.M.: Approximation of functions of several variables and imbedding theorems (2nd edition). Nauka, Moskva, 1977. | MR

[O1] Oswald P.: On estimates for one-dimensional spline approximation. In: Splines in Numerical Analysis (eds. J.Späth, J.W.Schmidt), Proc. ISAM'89 Wei{ß}ig 1989, Akad. Verl., Berlin, 1989, 111-124. | MR | Zbl

[O2] Oswald P.: On estimates for hierarchic basis representations of finite element functions. Report N/89/16, FSU Jena, 1989.

[RS] Runst T., Sickel W.: Mapping properties of $T:f\to |f|$ in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem. J. Approx. Th. (submitted).

[Sch] Schumaker L.L.: Spline functions: basic theory. Wiley, New York, 1981. | MR | Zbl

[S1] Sickel W.: On boundedness of superposition operators in spaces of Triebel-Lizorkin type. Czech. Math. J. 39 (1989), 323-347. | MR | Zbl

[S2] Sickel W.: Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ. (submitted). | Zbl

[T] Triebel H.: Interpolation theory, function spaces, differential operators. Dt. Verlag Wiss., Berlin 1978 - North-Holland, Amsterdam-New York-Oxford, 1978. | MR | Zbl