Keywords: Nemytzki operators; Besov spaces; moduli of smoothness; linear splines
@article{CMUC_1992_33_1_a7,
author = {Oswald, P.},
title = {On the boundedness of the mapping $f\to |f|$ in {Besov} spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {57--66},
year = {1992},
volume = {33},
number = {1},
mrnumber = {1173747},
zbl = {0766.46018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a7/}
}
Oswald, P. On the boundedness of the mapping $f\to |f|$ in Besov spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 33 (1992) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/CMUC_1992_33_1_a7/
[AZ] Appell J., Zabrejko P.: Nonlinear superposition operators. Cambr. Univ. Press, Cambridge, 1990. | MR | Zbl
[BM] Bourdaud G., Meyer Y.: Fonctions qui operent sur les espaces de Sobolev. J. Funct. Anal. 97 (1991), 351-360. | MR | Zbl
[CW] Cazenave T., Weissler F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$. Nonl. Anal. Th. Meth. Appl. 14 (1990), 807-836. | MR
[MM1] Marcus M., Mizel V.J.: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rat. Mech. Anal. 45 (1972), 294-320. | MR | Zbl
[MM2] Marcus M., Mizel V.J.: Nemitsky operators on Sobolev spaces. Arch. Rat. Mech. Anal. 51 (1973), 347-370. | MR | Zbl
[MM3] Marcus M., Mizel V.J.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33 (1978), 217-229. | MR
[N] Nikolskij S.M.: Approximation of functions of several variables and imbedding theorems (2nd edition). Nauka, Moskva, 1977. | MR
[O1] Oswald P.: On estimates for one-dimensional spline approximation. In: Splines in Numerical Analysis (eds. J.Späth, J.W.Schmidt), Proc. ISAM'89 Wei{ß}ig 1989, Akad. Verl., Berlin, 1989, 111-124. | MR | Zbl
[O2] Oswald P.: On estimates for hierarchic basis representations of finite element functions. Report N/89/16, FSU Jena, 1989.
[RS] Runst T., Sickel W.: Mapping properties of $T:f\to |f|$ in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem. J. Approx. Th. (submitted).
[Sch] Schumaker L.L.: Spline functions: basic theory. Wiley, New York, 1981. | MR | Zbl
[S1] Sickel W.: On boundedness of superposition operators in spaces of Triebel-Lizorkin type. Czech. Math. J. 39 (1989), 323-347. | MR | Zbl
[S2] Sickel W.: Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ. (submitted). | Zbl
[T] Triebel H.: Interpolation theory, function spaces, differential operators. Dt. Verlag Wiss., Berlin 1978 - North-Holland, Amsterdam-New York-Oxford, 1978. | MR | Zbl